首页> 外文期刊>Neural Computing and Applications >Neural network-based approaches, solving haplotype reconstruction in MEC and MEC/GI models
【24h】

Neural network-based approaches, solving haplotype reconstruction in MEC and MEC/GI models

机译:基于神经网络的方法,解决MEC和MEC / GI模型中的单倍型重建

获取原文
获取原文并翻译 | 示例

摘要

Single nucleotide polymorphism (SNP) in human genomes is considered to be highly associated with complex genetic diseases. As a consequence, obtaining all SNPs from human populations is one of the primary goals of recent studies on human genomics. The two sequences of SNPs in diploid human organisms are called haplotypes. In this paper, the problem of haplotype reconstruction from SNP fragments with and without genotype information is studied. Minimum error correction (MEC) is an important model for this problem but only effective when the error rate of the fragments is low. MEC/GI, as an extension to MEC model, employs the related genotype information besides the SNP fragments and, therefore, results in a more accurate inference. We introduce algorithmic neural network-based approaches and experimentally prove that our methods are fast and accurate. Particularly, our approach is faster, more accurate, and also compatible for solving MEC model, in comparison with a feed-forward (and back propagation like) neural network.
机译:人类基因组中的单核苷酸多态性(SNP)被认为与复杂的遗传疾病高度相关。因此,从人群中获得所有SNP是人类基因组学最新研究的主要目标之一。二倍体人类有机体中的两个SNP序列称为单倍型。本文研究了有和没有基因型信息的单核苷酸多态性片段的单倍型重建问题。最小错误校正(MEC)是解决此问题的重要模型,但仅在片段的错误率较低时才有效。 MEC / GI作为MEC模型的扩展,除了SNP片段外还利用了相关的基因型信息,因此可以进行更准确的推断。我们介绍了基于算法神经网络的方法,并通过实验证明了我们的方法快速准确。特别是,与前馈(和类似反向传播)神经网络相比,我们的方法更快,更准确,并且也兼容求解MEC模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号