首页> 外文期刊>Neural Computing and Applications >Superior robustness of power-sum activation functions in Zhang neural networks for time-varying quadratic programs perturbed with large implementation errors
【24h】

Superior robustness of power-sum activation functions in Zhang neural networks for time-varying quadratic programs perturbed with large implementation errors

机译:张神经网络中幂求和激活函数的强大鲁棒性,适用于时变二次程序,且执行错误较大

获取原文
获取原文并翻译 | 示例

摘要

A special class of recurrent neural network termed Zhang neural network (ZNN) depicted in the implicit dynamics has recently been introduced for online solution of time-varying convex quadratic programming (QP) problems. Global exponential convergence of such a ZNN model is achieved theoretically in an error-free situation. This paper investigates the performance analysis of the perturbed ZNN model using a special type of activation functions (namely, power-sum activation functions) when solving the time-varying QP problems. Robustness analysis and simulation results demonstrate the superior characteristics of using power-sum activation functions in the context of large ZNN-implementation errors, compared with the case of using linear activation functions. Furthermore, the application to inverse kinematic control of a redundant robot arm also verifies the feasibility and effectiveness of the ZNN model for time-varying QP problems solving.
机译:隐性动力学中描述的一类特殊的递归神经网络称为张神经网络(ZNN),用于时变凸二次规划(QP)问题的在线解决方案。这种ZNN模型的全局指数收敛理论上是在无错误的情况下实现的。本文研究时变QP问题时,使用特殊类型的激活函数(即功率和激活函数)对扰动的ZNN模型进行性能分析。鲁棒性分析和仿真结果表明,与使用线性激活函数的情况相比,在大ZNN实现误差的情况下使用功率和激活函数的优越性。此外,在冗余机械臂逆运动学控制中的应用还验证了ZNN模型解决时变QP问题的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号