首页> 外文期刊>Neural Computing and Applications >A neural-based concurrency control algorithm for database systems
【24h】

A neural-based concurrency control algorithm for database systems

机译:基于神经的数据库系统并发控制算法

获取原文
获取原文并翻译 | 示例

摘要

Concurrency control (CC) algorithms guarantee the correctness and consistency criteria for concurrent execution of a set of transactions in a database. A precondition that is seen in many CC algorithms is that the writeset (WS) and readset (RS) of transactions should be known before the transaction execution. However, in real operational environments, we know the WS and RS only for a fraction of transaction set before execution. However, optional knowledge about WS and RS of transactions is one of the advantages of the proposed CC algorithm in this paper. If the WS and RS are known before the transaction execution, the proposed algorithm will use them to improve the concurrency and performance. On the other hand, the concurrency control algorithms often use a specific static or dynamic equation in making decision about granting a lock or detection of the winner transaction. The proposed algorithm in this paper uses an adaptive resonance theory (ART)-based neural network for such a decision making. In this way, a parameter called health factor (HF) is defined for transactions that is used for comparing the transactions and detecting the winner one in accessing the database objects. HF is calculated using ART2 neural network. Experimental results show that the proposed neural-based CC (NCC) algorithm increases the level of concurrency by decreasing the number of aborts. The performance of proposed algorithm is compared with strict two-phase locking (S2PL) algorithm, which has been used in most commercial database systems. Simulation results show that the performance of proposed NCC algorithm, in terms of number of aborts, is better than S2PL algorithm in different transaction rates.
机译:并发控制(CC)算法可确保在数据库中并发执行一组事务的正确性和一致性标准。在许多CC算法中看到的一个先决条件是,在执行事务之前,应该知道事务的写入集(WS)和读取集(RS)。但是,在实际的操作环境中,我们只知道执行之前的一部分交易集的WS和RS。但是,关于事务的WS和RS的可选知识是本文提出的CC算法的优点之一。如果在执行事务之前就知道WS和RS,则所提出的算法将使用它们来提高并发性和性能。另一方面,并​​发控制算法通常使用特定的静态或动态方程式来决定授予锁定或检测获胜者交易。本文提出的算法使用基于自适应共振理论(ART)的神经网络进行决策。以这种方式,为交易定义了称为健康因子(HF)的参数,该参数用于比较交易并在访问数据库对象时检测获胜者。 HF是使用ART2神经网络计算的。实验结果表明,提出的基于神经网络的CC(NCC)算法通过减少中止次数来提高并发级别。将该算法的性能与严格的两阶段锁定(S2PL)算法进行了比较,该算法已在大多数商业数据库系统中使用。仿真结果表明,在不同的事务速率下,提出的NCC算法在中止次数方面的性能优于S2PL算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号