首页> 外文期刊>Neural Computing & Applications >Text categorization based on combination of modified back propagation neural network and latent semantic analysis
【24h】

Text categorization based on combination of modified back propagation neural network and latent semantic analysis

机译:基于改进的反向传播神经网络与潜在语义分析相结合的文本分类

获取原文
获取原文并翻译 | 示例

摘要

This paper proposed a new text categorization model based on the combination of modified back propagation neural network (MBPNN) and latent semantic analysis (LSA). The traditional back propagation neural network (BPNN) has slow training speed and is easy to trap into a local minimum, and it will lead to a poor performance and efficiency. In this paper, we propose the MBPNN to accelerate the training speed of BPNN and improve the categorization accuracy. LSA can overcome the problems caused by using statistically derived conceptual indices instead of individual words. It constructs a conceptual vector space in which each term or document is represented as a vector in the space. It not only greatly reduces the dimension but also discovers the important associative relationship between terms. We test our categorization model on 20-newsgroup corpus and reuter-21578 corpus, experimental results show that the MBPNN is much faster than the traditional BPNN. It also enhances the performance of the traditional BPNN. And the application of LSA for our system can lead to dramatic dimensionality reduction while achieving good classification results.
机译:本文提出了一种基于改进的反向传播神经网络(MBPNN)和潜在语义分析(LSA)相结合的文本分类模型。传统的反向传播神经网络(BPNN)的训练速度较慢,容易陷入局部最小值,这将导致性能和效率低下。在本文中,我们提出了MBPNN来加快BPNN的训练速度并提高分类的准确性。 LSA可以克服由于使用统计派生的概念索引而不是单个单词而引起的问题。它构建了一个概念向量空间,其中每个术语或文档在空间中均表示为向量。它不仅大大减小了维数,而且发现了词之间的重要关联关系。我们在20个新闻组语料库和reuter-21578语料库上测试了分类模型,实验结果表明MBPNN比传统的BPNN快得多。它还增强了传统BPNN的性能。 LSA在我们的系统中的应用可以导致大幅降低尺寸,同时获得良好的分类结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号