首页> 外文期刊>Neural Computing & Applications >Real-time removal of ocular artifacts from EEG based on independent component analysis and manifold learning
【24h】

Real-time removal of ocular artifacts from EEG based on independent component analysis and manifold learning

机译:基于独立成分分析和流形学习从EEG实时去除眼部伪影

获取原文
获取原文并翻译 | 示例

摘要

Frequent occurrence of ocular artifacts leads to serious problems in interpreting and analyzing the electroencephalogram (EEG). In the present paper, a novel and robust technique is proposed to eliminate ocular artifacts from EEG signals in real time. Independent Component Analysis (ICA) is used to decompose EEG signals. The features of topography and power spectral density of those components are extracted. Moreover, we introduce manifold learning algorithm, a recently popular dimensionality reduction technique, to reduce the dimensionality of initial features, and then those new features are fed to a classifier to identify ocular artifacts components. A k-nearest neighbor classifier is adopted to classify components because classification results show that manifold learning with the nearest neighbor algorithm works best. Finally, the artifact removal method proposed here is evaluated by the comparisons of EEG data before and after artifact removal. The results indicate that the method proposed could remove ocular artifacts effectively from EEG signals with little distortion of the underlying brain signals and be satisfied the real-time application.
机译:眼神器的频繁出现导致在解释和分析脑电图(EEG)方面出现严重问题。在本文中,提出了一种新颖且鲁棒的技术以实时消除EEG信号中的眼部伪像。独立分量分析(ICA)用于分解EEG信号。提取这些组件的地形特征和功率谱密度。此外,我们引入了流形学习算法(一种最近流行的降维技术)来降低初始特征的维数,然后将这些新特征输入到分类器中以识别人工眼的成分。由于分类结果表明使用最近邻算法进行流形学习效果最好,因此采用k最近邻分类器对组件进行分类。最后,本文提出的伪影去除方法是通过对伪影去除前后的EEG数据进行比较来评估的。结果表明,所提出的方法可以有效地从脑电信号中去除眼部伪影,而对底层脑信号的失真很小,可以满足实时应用的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号