首页> 外文期刊>Neural Computing & Applications >Emergent self-organizing feature map for recognizing road sign images
【24h】

Emergent self-organizing feature map for recognizing road sign images

机译:紧急自组织特征图,用于识别路标图像

获取原文
获取原文并翻译 | 示例

摘要

Road sign recognition system remains a challenging part of designing an Intelligent Driving Support System. While there exist many approaches to classify road signs, none have adopted an unsupervised approach. This paper proposes a way of Self-Organizing feature mapping for recognizing a road sign. The emergent self-organizing map (ESOM) is employed for the feature mapping in this study. It has the capability of visualizing the distance structures as well as the density structure of high-dimensional data sets, in which the ESOM is suitable to detect non-trivial cluster structures. This paper discusses the usage of ESOM for road sign detection and classification. The benchmarking against some other commonly used classifiers was performed. The results demonstrate that the ESOM approach outperforms the others in conducting the same simulations of the road sign recognition. We further demonstrate that the result obtained with ESOM is significantly more superior than traditional SOM which does not take into the boundary effect like ESOM did.
机译:道路标志识别系统仍然是设计智能驾驶支持系统中具有挑战性的部分。尽管有许多方法可以对道路标志进行分类,但没有一种方法是采用无监督方法。本文提出了一种用于路标识别的自组织特征映射方法。在这项研究中,采用了紧急自组织图(ESOM)进行特征映射。它具有可视化高维数据集的距离结构和密度结构的功能,其中ESOM适合检测非平凡的聚类结构。本文讨论了ESOM在道路标志检测和分类中的用途。执行了针对其他一些常用分类器的基准测试。结果表明,在进行相同的路标识别模拟过程中,ESOM方法优于其他方法。我们进一步证明,使用ESOM获得的结果明显优于传统的SOM,后者没有像ESOM那样考虑边界效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号