首页> 外文期刊>Neural Computing & Applications >Vehicle inductive signatures recognition using a Madaline neural network
【24h】

Vehicle inductive signatures recognition using a Madaline neural network

机译:使用Madaline神经网络的车辆归纳签名识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we report results obtained with a Madaline neural network trained to classify inductive signatures of two vehicles classes: trucks with one rear axle and trucks with double rear axle. In order to train the Madaline, the inductive signatures were pre-processed and both classes, named C2 and C3, were subdivided into four subclasses. Thus, the initial classification task was split into four smaller tasks (theoretically) easier to be performed. The heuristic adopted in the training attempts to minimize the effects of the input space non-linearity on the classifier performance by uncoupling the learning of the classes and, for this, we induce output Adalines to specialize in learning one of the classes. The percentages of correct classifications presented concern patterns which were not submitted to the neural network in the training process, and, therefore, they indicate the neural network generalization ability. The results are good and stimulate the maintenance of this research on the use of Madaline networks in vehicle classification tasks using not linearly separable inductive signatures.
机译:在本文中,我们报告了通过Madaline神经网络获得的结果,该神经网络经过训练可对两种车辆类别的归纳特征进行分类:带有一个后轴的卡车和带有两个后轴的卡车。为了训练Madaline,对归纳签名进行了预处理,并将名为C2和C3的两个类细分为四个子类。因此,将初始分类任务分为四个较小的任务(从理论上来说)更易于执行。训练中采用的启发式方法试图通过使类的学习不耦合来最小化输入空间非线性对分类器性能的影响,为此,我们诱导输出Adalines专门研究一种类。正确分类的百分比呈现出在训练过程中未提交给神经网络的关注模式,因此,它们指示了神经网络的泛化能力。结果是好的,并刺激了关于使用Madaline网络在车辆分类任务中使用非线性可分离归纳签名的研究的维护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号