首页> 外文期刊>Neural Computing & Applications >Implementation of an LVQ neural network with a variable size: algorithmic specification, architectural exploration and optimized implementation on FPGA devices
【24h】

Implementation of an LVQ neural network with a variable size: algorithmic specification, architectural exploration and optimized implementation on FPGA devices

机译:可变大小的LVQ神经网络的实现:算法规范,架构探索和FPGA器件的优化实现

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an optimizing methodology for the implementation of a Learning Vector Quantization (LVQ) neural network in a Field Programmable Gate Array (FPGA) device. Starting from an algorithmic specification in the form of a Factorized and Conditioned Data Dependence Graph (GFCDD), we suggest a design methodology of the LVQ-dedicated architecture. This formal methodology is called AAA, “Algorithm Architecture Adequation”. Using graph transformations, it allows the generation of an optimized circuit implementation at the Register Transfer Level (RTL). It is associated to the SynDEx-IC software tool. Based on this formal methodology, we are able to explore and generate various LVQ network implementations by varying the LVQ sizes while minimizing the hardware resources and the design time. In addition, real-time constraints should be respected to ensure a reliable classification of vigilance states in humans from electroencephalographic signals (EEG). To validate our approach, the optimized LVQ implementation was tried on two types of Virtex devices.
机译:本文提出了一种在现场可编程门阵列(FPGA)设备中实现学习矢量量化(LVQ)神经网络的优化方法。从因式分解和有条件的数据依赖图(GFCDD)形式的算法规范开始,我们建议采用LVQ专用体系结构的设计方法。这种正式的方法称为AAA,“算法体系结构适当性”。使用图形变换,它可以在寄存器传输级(RTL)生成优化的电路实现。它与SynDEx-IC软件工具关联。基于这种正式的方法,我们能够通过更改LVQ大小来探索并生成各种LVQ网络实现,同时将硬件资源和设计时间降至最低。此外,应遵守实时约束条件,以确保根据脑电图信号(EEG)对人的警觉状态进行可靠的分类。为了验证我们的方法,在两种类型的Virtex器件上尝试了优化的LVQ实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号