首页> 外文期刊>Neural Computing & Applications >Market segmentation of organ donors in Egypt: a bio-inspired computational intelligence approach
【24h】

Market segmentation of organ donors in Egypt: a bio-inspired computational intelligence approach

机译:埃及器官捐赠者的市场细分:一种受生物启发的计算智能方法

获取原文
获取原文并翻译 | 示例

摘要

First performed in 1954, organ transplantation is a universally practiced clinical procedure. This study uses ant colony optimization (ACO), radial basis function neural network (RBFNN), Kohonen’s self-organizing maps (SOM), and support vector machines (SVMs) to examine the effect of various cognitive, psychographic, and attitudinal factors on organ donation. ACO, RBFNN, SOM, and SVMs are compared to a standard statistical method (linear discriminant analysis [LDA]). The variable sets considered are altruistic values, perceived risks/benefits, knowledge, attitudes toward organ donation, and intention to donate organs. The paper shows how it is possible to identify various dimensions of organ donation behavior by uncovering complex patterns in the dataset and also shows the classification and clustering abilities of machine-learning systems.
机译:器官移植于1954年首次进行,是一种通用的临床程序。这项研究使用蚁群优化(ACO),径向基函数神经网络(RBFNN),Kohonen的自组织图(SOM)和支持向量机(SVM)来检查各种认知,心理和态度因素对器官的影响捐款。将ACO,RBFNN,SOM和SVM与标准统计方法(线性判别分析[LDA])进行比较。考虑的变量集是利他价值,感知的风险/收益,知识,对器官捐赠的态度以及捐赠器官的意愿。本文展示了如何通过揭示数据集中的复杂模式来识别器官捐赠行为的各个维度,还展示了机器学习系统的分类和聚类能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号