首页> 外文期刊>Neural Computing & Applications >Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation
【24h】

Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation

机译:人工蜂群算法-神经网络用于生化网络近似的S系统模型

获取原文
获取原文并翻译 | 示例

摘要

High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information requires systematic application of both experimental and computational methods. S-systems are nonlinear mathematical approximate models based on the power-law formalism and provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction, and metabolic networks. However, S-systems need lots of iterations to obtain convergent gene expression profiles. For this reason, this study constructed a substitutive approach using artificial neural networks (ANNs) based on the artificial bee colony (ABC) algorithm with learning and training processes. This was used to obtain models and prove that our model (called ABC-NN) certainly is another method to acquire convergent gene expressions, except for S-systems, supported by our testing results.
机译:如今,高通量技术可以获取生物学数据。这些时间剖面带有有关从中提取它们的生化网络的拓扑和动力学信息。检索此信息需要实验方法和计算方法的系统应用。 S系统是基于幂律形式主义的非线性数学近似模型,为模拟表现出复杂动态的集成生物系统(如遗传电路,信号转导和代谢网络)提供了通用框架。但是,S系统需要进行大量迭代才能获得收敛的基因表达谱。因此,本研究基于具有学习和训练过程的人工蜂群(ABC)算法,使用人工神经网络(ANN)构建了一种替代方法。这被用来获得模型,并证明我们的模型(称为ABC-NN)无疑是另一种获取收敛基因表达的方法,除了S系统外,我们的测试结果也对此提供了支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号