首页> 外文期刊>Neural Computing & Applications >A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems
【24h】

A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems

机译:一种新的多基因遗传规划方法,用于非线性系统建模。第二部分:岩土工程和地震工程问题

获取原文
获取原文并翻译 | 示例

摘要

Complexity of analysis of geotechnical behavior is due to multivariable dependencies of soil and rock responses. In order to cope with this complex behavior, traditional forms of engineering design solutions are reasonably simplified. Incorporating simplifying assumptions into the development of the traditional methods may lead to very large errors. This paper presents an endeavor to exploit a robust multi-gene genetic programming (MGGP) method for the analysis of geotechnical and earthquake engineering systems. MGGP is a modified genetic programming approach for model structure selection combined with a classical technique for parameter estimation. To justify the abilities of MGGP, it is systematically employed to formulate the complex geotechnical engineering problems. Different classes of the problems analyzed include the assessment of (i) undrained lateral load capacity of piles, (ii) undrained side resistance alpha factor for drilled shafts, (iii) settlement around tunnels, and (iv) soil liquefaction. The validity of the derived models is tested for a part of test results beyond the training data domain. Numerical examples show the superb accuracy, efficiency, and great potential of MGGP. Contrary to artificial neural networks and many other soft computing tools, MGGP provides constitutive prediction equations. The MGG-based solutions are particularly valuable for pre-design practices.
机译:岩土行为分析的复杂性归因于土壤和岩石响应的多变量依赖性。为了应付这种复杂的行为,合理简化了传统形式的工程设计解决方案。将简化的假设结合到传统方法的开发中可能会导致很大的错误。本文提出了一种开发可靠的多基因遗传规划(MGGP)方法用于岩土和地震工程系统分析的方法。 MGGP是用于模型结构选择的改进的遗传规划方法,结合了用于参数估计的经典技术。为了证明MGGP的能力是合理的,它被系统地用来制定复杂的岩土工程问题。分析的不同类别的问题包括评估(i)桩的不排水侧向承载能力,(ii)钻井的不排水侧阻力α因子,(iii)隧道周围的沉降以及(iv)土壤液化。超出训练数据域的一部分测试结果将测试导出模型的有效性。数值算例表明了MGGP的卓越准确性,效率和巨大潜力。与人工神经网络和许多其他软计算工具相反,MGGP提供了本构预测方程。基于MGG的解决方案对于预设计实践特别有价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号