首页> 外文期刊>Neural computation >Emergence of Content-Agnostic Information Processing by a Robot Using Active Inference, Visual Attention, WorkingMemory, and Planning
【24h】

Emergence of Content-Agnostic Information Processing by a Robot Using Active Inference, Visual Attention, WorkingMemory, and Planning

机译:机器人使用主动推断,视觉关注,工作制作和规划的内容 - 不可知信息处理的出现

获取原文

摘要

Generalization by learning is an essential cognitive competency for humans. For example, we can manipulate even unfamiliar objects and can generate mental images before enacting a preplan. How is this possible? Our study investigated this problem by revisiting our previous study (Jung,Matsumoto, & Tani, 2019), which examined the problem of visionbased, goal-directed planning by robots performing a task of block stacking. By extending the previous study, our work introduces a large network comprising dynamically interacting submodules, including visual working memory (VWMs), a visual attention module, and an executive network. The executive network predicts motor signals, visual images, and various controls for attention, as well as masking of visual information. The most significant difference from the previous study is that our current model contains an additional VWM. The entire network is trained by using predictive coding and an optimal visuomotor plan to achieve a given goal state is inferred using active inference. Results indicate that our current model performs significantly better than that used in Jung et al. (2019), especially when manipulating blocks with unlearned colors and textures. Simulation results revealed that the observed generalization was achieved because content-agnostic information processing developed through synergistic interaction between the secondVWMand other modules during the course of learning, in which memorizing image contents and transforming them are dissociated. This letter verifies this claim by conducting both qualitative and quantitative analysis of simulation results.
机译:通过学习的概括是人类的重要认知能力。例如,我们可以操纵即使是不熟悉的对象,并且可以在颁布预先颁布之前生成心理图像。这怎么可能?我们的研究通过重新检测我们以前的研究(Jung,Matsumoto,&Tani,2019)来调查了这个问题,该问题审查了通过机器人执行块堆叠任务的机器人的愿景,目标定向规划。通过延长前一项研究,我们的工作引入了一个大型网络,包括动态交互子模块,包括可视工作存储器(VWM),视觉注意模块和执行网络。执行网络预测电机信号,视觉图像和各种控制,以及视觉信息的屏蔽。前一项研究中最重要的差异是我们的当前模型包含额外的VWM。通过使用预测编码训练整个网络,并且使用有源推断推断出实现给定目标状态的最佳求解器计划。结果表明,我们目前的模型比Jung等人在jung等人使用的模型更好地表现得明显更好。 (2019),特别是在用无缝颜色和纹理的操纵块时。仿真结果表明,达到了观察到的泛化,因为在学习过程中通过SecondVWMAND其他模块之间的协同相互作用而开发的内容无关信息处理,其中记忆图像内容和转换它们的变换。这封信通过对模拟结果进行定性和定量分析来验证这一主张。

著录项

  • 来源
    《Neural computation》 |2021年第9期|2354-2407|共54页
  • 作者单位

    Okinawa Institute of Science and Technology Okinawa 904-0412 Japan;

    Brown University Providence RI 02912 U.S.A;

    Okinawa Institute of Science and Technology Okinawa 904-0412 Japan;

    Okinawa Institute of Science and Technology Okinawa 904-0412 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号