首页> 外文期刊>Neural computation >Unsupervised Discovery, Control, and Disentanglement of Semantic Attributes With Applications to Anomaly Detection
【24h】

Unsupervised Discovery, Control, and Disentanglement of Semantic Attributes With Applications to Anomaly Detection

机译:用应用于异常检测的语义属性的无监督发现,控制和解剖

获取原文
获取原文并翻译 | 示例

摘要

Our work focuses on unsupervised and generative methods that addressthe following goals: (1) learning unsupervised generative representationsthat discover latent factors controlling image semantic attributes,(2) studying how this ability to control attributes formally relates to theissue of latent factor disentanglement, clarifying related but dissimilarconcepts that had been confounded in the past, and (3) developinganomaly detection methods that leverage representations learned in thefirst goal. For goal 1, we propose a network architecture that exploits thecombination of multiscale generative models with mutual information(MI) maximization. For goal 2, we derive an analytical result, lemma 1,that brings clarity to two related but distinct concepts: the ability of generativenetworks to control semantic attributes of images they generate,resulting from MI maximization, and the ability to disentangle latentspace representations, obtained via total correlation minimization. Morespecifically, we demonstrate that maximizing semantic attribute controlencourages disentanglement of latent factors. Using lemma 1 and adoptingMIin our loss function, we then show empirically that for image generationtasks, the proposed approach exhibits superior performance asmeasured in the quality and disentanglement of the generated imageswhen compared to other state-of-the-art methods, with quality assessedvia the Fréchet inception distance (FID) and disentanglement via mutualinformation gap. For goal 3, we design several systems for anomaly detection exploiting representations learned in goal 1 and demonstratetheir performance benefits when compared to state-of-the-art generativeand discriminative algorithms. Our contributions in representationlearning have potential applications in addressing other important problemsin computer vision, such as bias and privacy in AI.
机译:我们的工作侧重于解决的无人驾驶和生成方法以下目标:(1)学习无监督的生成陈述发现控制图像语义属性的潜在因素,(2)研究这种控制属性的能力如何与之相关问题潜在因子解剖学,澄清相关但不相似过去被混淆的概念,和(3)发展异常检测方法利用符号的逻辑学习第一个目标。对于目标1,我们提出了一种利用的网络架构使用相互信息的多尺度生成模型的组合(mi)最大化。对于目标2,我们推导出分析结果,LEMMA 1,这为两个相关但截然不同的概念带来了清晰度:生成能力控制他们生成的图像的语义属性的网络,由MI最大化和解开潜在的能力产生通过总相关性最小化获得的空间表示。更多的具体来说,我们展示了最大化语义属性控制鼓励解开潜在因素。使用lemma 1和Adoptingmi在我们的损失函数中,我们将凭经验显示图像生成任务,拟议的方法表现出卓越的性能以生成的图像的质量和解剖方式测量与其他最先进的方法相比,质量评估通过弗雷赫特初始距离(FID)和脱吊度通过相互作用信息差距。对于目标3,我们设计用于异常检测的多个系统,以便在目标1中学到学习的探索表示并证明与最先进的生成相比,他们的性能效益和鉴别算法。我们在代表中的贡献学习具有潜在的应用程序来解决其他重要问题在计算机愿景中,例如AI中的偏见和隐私。

著录项

  • 来源
    《Neural computation》 |2021年第3期|802-826|共25页
  • 作者单位

    Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 U.S.A.;

    Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 U.S.A.;

    Department of Mathematics and Statistics Queens University ON K7L 3N6 Canada;

    Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 U.S.A. and Department of Computer Science Johns Hopkins University Baltimore MD 21218 U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号