首页> 外文期刊>Neural computation >Reverse-Engineering Neural Networks to Characterize Their Cost Functions
【24h】

Reverse-Engineering Neural Networks to Characterize Their Cost Functions

机译:逆向工程神经网络,以表征其成本函数

获取原文
获取原文并翻译 | 示例

摘要

This letter considers a class of biologically plausible cost functions for neural networks, where the same cost function is minimized by both neural activity and plasticity. We show that such cost functions can be cast as a variational bound on model evidence under an implicit generative model. Using generative models based on partially observed Markov decision processes (POMDP), we show that neural activity and plasticity perform Bayesian inference and learning, respectively, by maximizing model evidence. Using mathematical and numerical analyses, we establish the formal equivalence between neural network cost functions and variational free energy under some prior beliefs about latent states that generate inputs. These prior beliefs are determined by particular constants (e.g., thresholds) that define the cost function. This means that the Bayes optimal encoding of latent or hidden states is achieved when the network's implicit priors match the process that generates its inputs. This equivalence is potentially important because it suggests that any hyperparameter of a neural network can itself be optimized-by minimization with respect to variational free energy. Furthermore, it enables one to characterize a neural network formally, in terms of its prior beliefs.
机译:这封信考虑了神经网络的一类生物网络的成本函数,其中通过神经活动和可塑性最小化了相同的成本函数。我们表明,在隐式生成模型下,这种成本函数可以作为模型证据的变分。使用基于部分观察到的马尔可夫决策过程(POMDP)的生成模型,我们表明神经活动和可塑性分别通过最大化模型证据来分别进行贝叶斯推理和学习。使用数学和数值分析,我们在一些现有信念下建立神经网络成本函数和变分自由能之间的正式等价性关于产生输入的潜在状态。这些先前信仰由定义成本函数的特定常数(例如,阈值)确定。这意味着当网络的隐式前导者匹配生成其输入的过程时,实现了贝叶斯的最佳编码潜伏或隐藏状态。这种等价可能是重要的,因为它表明神经网络的任何封路数据本身都可以通过相对于变分的自由能而最小化。此外,就其现有信念而言,它使一个人能够正式地表征神经网络。

著录项

  • 来源
    《Neural computation》 |2020年第11期|2085-2121|共37页
  • 作者

    Isomura Takuya; Friston Karl;

  • 作者单位

    RIKEN Ctr Brain Sci Brain Intelligence Theory Unit Wako Saitama 3510198 Japan;

    UCL Wellcome Ctr Human Neuroimaging Inst Neurol London WC1N 3AR England;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号