首页> 外文期刊>Neural computation >Equivalence Projective Simulation as a Framework for Modeling Formation of Stimulus Equivalence Classes
【24h】

Equivalence Projective Simulation as a Framework for Modeling Formation of Stimulus Equivalence Classes

机译:等价投影仿真作为刺激等价类形成模型的框架

获取原文

摘要

Stimulus equivalence (SE) and projective simulation (PS) study complex behavior, the former in human subjects and the latter in artificial agents.We apply the PS learning framework for modeling the formation of equivalence classes. For this purpose, we first modify the PS model to accommodate imitating the emergence of equivalence relations. Later,we formulate the SE formation through the matching-to-sample (MTS) procedure. The proposed version of PS model, called the equivalence projective simulation (EPS) model, is able to act within a varying action set and derive new relations without receiving feedback from the environment. To the best of our knowledge, it is the first time that the field of equivalence theory in behavior analysis has been linked to an artificial agent in a machine learning context. Thismodel hasmany advantages over existing neural network models. Briefly, our EPS model is not a black box model, but rather a model with the capability of easy interpretation and flexibility for further modifications. To validate the model, some experimental results performed by prominent behavior analysts are simulated. The results confirm that the EPS model is able to reliably simulate and replicate the same behavior as real experiments in various settings, including formation of equivalence relations in typical participants, nonformation of equivalence relations in language-disabled children, and nodal effect in a linear series with nodal distance five.Moreover, through a hypothetical experiment, we discuss the possibility of applying EPS in further equivalence theory research.
机译:刺激等效性(SE)和投影模拟(PS)研究复杂行为,前者在人类受试者中,后者在人工代理中。我们将PS学习框架应用于模型等效类的形成。为此,我们首先修改PS模型以适应模仿等价关系的出现。稍后,我们通过样品匹配(MTS)程序来制定SE的形成。 PS模型的拟议版本称为等效投影模拟(EPS)模型,能够在变化的动作集中起作用并获得新的关系,而无需接收来自环境的反馈。据我们所知,这是行为分析中的对等理论领域首次与机器学习环境中的人工代理相关联。与现有的神经网络模型相比,该模型具有许多优势。简而言之,我们的EPS模型不是黑匣子模型,而是具有易于解释和灵活地进行进一步修改的能力的模型。为了验证该模型,模拟了著名行为分析师执行的一些实验结果。结果证实,EPS模型能够在各种设置下可靠地模拟和复制与真实实验相同的行为,包括在典型参与者中形成等价关系,在语言障碍儿童中不形成等价关系以及线性序列中的节点效应。节点距离为5。此外,通过假设实验,我们讨论了将EPS用于进一步的等效理论研究的可能性。

著录项

  • 来源
    《Neural computation》 |2020年第5期|912-968|共57页
  • 作者单位

    Department of Computer Science Oslo Metropolitan University Oslo 0167 Norway;

    Department of Behavioral Science Oslo Metropolitan University Oslo 0167 Norway;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号