首页> 外文期刊>Neural computation >Capturing the Forest but Missing the Trees:Microstates Inadequate for Characterizing Shorter-Scale EEG Dynamics
【24h】

Capturing the Forest but Missing the Trees:Microstates Inadequate for Characterizing Shorter-Scale EEG Dynamics

机译:捕捉森林却错过树木:微状态不足以表征较短规模的脑电图动力学

获取原文
获取原文并翻译 | 示例

摘要

The brain is known to be active even when not performing any overt cognitive tasks, and often it engages in involuntary mind wandering. This resting state has been extensively characterized in terms of fMRI-derived brain networks. However, an alternate method has recently gained popularity: EEG microstate analysis. Proponents of microstates postulate that the brain discontinuously switches between four quasi-stable states defined by specific EEG scalp topologies at peaks in the global field potential (GFP). These microstates are thought to be "atoms of thought," involved with visual, auditory, salience, and attention processing. However, this method makes some major assumptions by excluding EEG data outside the GFP peaks and then clustering the EEG scalp topologies at the GFP peaks, assuming that only one microstate is active at any given time. This study explores the evidence surrounding these assumptions by studying the temporal dynamics of microstates and its clustering space using tools from dynamical systems analysis, fractal, and chaos theory to highlight the shortcomings in microstate analysis. The results show evidence of complex and chaotic EEG dynamics outside the GFP peaks, which is being missed by microstate analysis. Furthermore, the winner-takes-all approach of only one microstate being active at a time is found to be inadequate since the dynamic EEG scalp topology does not always resemble that of the assigned microstate, and there is competition among the different microstate classes. Finally, clustering space analysis shows that the four microstates do not cluster into four distinct and separable clusters. Taken collectively, these results show that the discontinuous description of EEG microstates is inadequate when looking at nonstationary short-scale EEG dynamics.
机译:众所周知,即使不执行任何明显的认知任务,大脑也很活跃,并且经常参与非自愿的思维游荡。根据fMRI衍生的大脑网络已广泛表征了这种静止状态。但是,最近有一种替代方法越来越流行:EEG微状态分析。微观状态的支持者认为,大脑在特定的EEG头皮拓扑在全局场势(GFP)的峰值处不连续地在四个准稳定状态之间切换。这些微状态被认为是“思想的原子”,涉及视觉,听觉,显着性和注意力加工。但是,此方法通过排除GFP峰以外的EEG数据,然后在GFP峰处将EEG头皮拓扑聚类来做出一些主要假设,假设在任何给定时间只有一个微状态处于活动状态。本研究通过使用动力学系统分析,分形和混沌理论的工具研究微状态的时间动态及其聚类空间,探索了围绕这些假设的证据,以突出微状态分析的缺点。结果表明,GFP峰以外的复杂且混乱的脑电图动力学被微观状态分析所遗漏。此外,由于动态EEG头皮拓扑结构并不总是类似于所分配的微状态,并且一次不同的微状态类别之间存在竞争,因此一次仅激活一个微状态的赢家通吃方法被认为是不充分的。最后,聚类空间分析表明,四个微状态没有聚集成四个不同且可分离的聚类。总的来说,这些结果表明,当观察非平稳的短尺度脑电动力学时,对脑电微状态的不连续描述是不充分的。

著录项

  • 来源
    《Neural computation》 |2019年第11期|2177-2211|共35页
  • 作者单位

    McMaster Univ Neurosci Grad Program Hamilton ON L8S 4L8 Canada;

    McMaster Univ Res & High Performance Comp Hamilton ON L8S 4L8 Canada|Vector Inst Artificial Intelligence Toronto ON M5G 1M1 Canada;

    Vector Inst Artificial Intelligence Toronto ON M5G 1M1 Canada|McMaster Univ Dept Elect & Comp Engn Hamilton ON L8S 4L8 Canada|McMaster Univ McMaster Sch Biomed Engn Hamilton ON L8S 4L8 Canada;

    Vector Inst Artificial Intelligence Toronto ON M5G 1M1 Canada|McMaster Univ Dept Psychol Neurosci & Behav Hamilton ON L8S 4L8 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号