首页> 外文期刊>Neural computation >Filtering Compensation for Delays and Prediction Errors during Sensorimotor Control
【24h】

Filtering Compensation for Delays and Prediction Errors during Sensorimotor Control

机译:传感器运动控制中的延迟和预测误差的滤波补偿

获取原文
获取原文并翻译 | 示例

摘要

Compensating for sensorimotor noise and for temporal delays has been identified as a major function of the nervous system. Although these aspects have often been described separately in the frameworks of optimal cue combination or motor prediction during movement planning, control-theoretic models suggest that these two operations are performed simultaneously, and mounting evidence supports that motor commands are based on sensory predictions rather than sensory states. In this letter, we study the benefit of state estimation for predictive sensorimotor control. More precisely, we combine explicit compensation for sensorimotor delays and optimal estimation derived in the context of Kalman filtering. We show, based on simulations of human-inspired eye and arm movements, that filtering sensory predictions improves the stability margin of the system against prediction errors due to low-dimensional predictions or to errors in the delay estimate. These simulations also highlight that prediction errors qualitatively account for a broad variety of movement disorders typically associated with cerebellar dysfunctions. We suggest that adaptive filtering in cerebellum, instead of often-assumed feedforward predictions, may achieve simple compensation for sensorimotor delays and support stable closed-loop control of movements.
机译:补偿感觉运动噪声和时间延迟已被确定为神经系统的主要功能。尽管通常在运动计划期间的最佳提示组合或运动预测的框架中分别描述了这些方面,但是控制理论模型表明这两个操作是同时执行的,并且越来越多的证据支持运动命令基于感官预测而非感官预测状态。在这封信中,我们研究了状态估计对预测感觉运动控制的益处。更准确地说,我们将对感觉运动延迟的显式补偿与在卡尔曼滤波的背景下得出的最佳估计结合起来。基于人类启发的眼睛和手臂运动的仿真,我们表明,过滤感官预测可以提高系统的稳定性,以应对由于低维预测或延迟估计中的错误而导致的预测错误。这些模拟还突出表明,预测错误定性地解释了通常与小脑功能障碍有关的多种运动障碍。我们建议小脑的自适应滤波,而不是通常假定的前馈预测,可以实现对感觉运动延迟的简单补偿,并支持运动的稳定闭环控制。

著录项

  • 来源
    《Neural computation》 |2019年第4期|738-764|共27页
  • 作者

    Crevecoeur F.; Gevers M.;

  • 作者单位

    Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math, B-1348 Louvain La Neuve, Belgium|Univ Louvain, Inst Neurosci, B-1200 Brussels, Belgium;

    Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math, B-1348 Louvain La Neuve, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号