首页> 外文期刊>Neural computation >Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks
【24h】

Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks

机译:使用K最近邻,径向基函数和反向传播神经网络的手写数字识别

获取原文
获取原文并翻译 | 示例

摘要

Results of recent research suggest that carefully designed multiplayer neural networks with local “receptive fields” and shared weights may be unique in providing low error rates on handwritten digit recognition tasks. This study, however, demonstrates that these networks, radial basis function (RBF) networks, and k nearest-neighbor (kNN) classifiers, all provide similar low error rates on a large handwritten digit database. The backpropagation network is overall superior in memory usage and classification time but can provide “false positive” classifications when the input is not a digit. The backpropagation network also has the longest training time. The RBF classifier requires more memory and more classification time, but less training time. When high accuracy is warranted, the RBF classifier can generate a more effective confidence judgment for rejecting ambiguous inputs. The simple kNN classifier can also perform handwritten digit recognition, but requires a prohibitively large amount of memory and is much slower at classification. Nevertheless, the simplicity of the algorithm and fast training characteristics makes the kNN classifier an attractive candidate in hardware-assisted classification tasks. These results on a large, high input dimensional problem demonstrate that practical constraints including training time, memory usage, and classification time often constrain classifier selection more strongly than small differences in overall error rate.
机译:最近的研究结果表明,精心设计的具有局部“接受域”和共享权重的多人神经网络可能在提供手写数字识别任务的低错误率方面是独特的。但是,这项研究表明,这些网络,径向基函数(RBF)网络和k个最近邻(kNN)分类器在大型手写数字数据库上均提供了相似的低错误率。反向传播网络在内存使用和分类时间方面总体上优越,但是当输入不是数字时,可以提供“假肯定”分类。反向传播网络的训练时间也最长。 RBF分类器需要更多的内存和更多的分类时间,但需要更少的训练时间。当保证高精度时,RBF分类器可以生成更有效的置信度判断,以拒绝模棱两可的输入。简单的kNN分类器还可以执行手写数字识别,但是需要大量的内存,并且分类速度慢得多。尽管如此,算法的简单性和快速的训练特性使kNN分类器成为了硬件辅助分类任务中有吸引力的候选者。这些关于大型高输入维数问题的结果表明,包括训练时间,内存使用情况和分类时间在内的实际约束通常会比总错误率的微小差异更强烈地限制分类器的选择。

著录项

  • 来源
    《Neural computation》 |1991年第3期|440-449|共10页
  • 作者

    Lee Y;

  • 作者单位

    Digital Equipment Corp., 40 Old Bolton Road OG01-2/U11, Stow, MA 01775 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号