首页> 外文期刊>Neural computation >Improving the Accuracy of an Artificial Neural Network Using Multiple Differently Trained Networks
【24h】

Improving the Accuracy of an Artificial Neural Network Using Multiple Differently Trained Networks

机译:使用多个训练有素的网络提高人工神经网络的精度

获取原文
获取原文并翻译 | 示例

摘要

When either detection rate (sensitivity) or false alarm rate (specificity) is optimized in an artificial neural network trained to identify myocardial infarction, the increase in the accuracy of one is always done at the expense of the accuracy of the other. To overcome this loss, two networks that were separately trained on populations of patients with different likelihoods of myocardial infarction were used in concert. One network was trained on clinical pattern sets derived from patients who had a low likelihood of myocardial infarction, while the other was trained on pattern sets derived from patients with a high likelihood of myocardial infarction. Unknown patterns were analyzed by both networks. If the output generated by the network trained on the low risk patients was below an empirically set threshold, this output was chosen as the diagnostic output. If the output was above that threshold, the output of the network trained on the high risk patients was used as the diagnostic output. The dual network correctly identified 39 of the 40 patients who had sustained a myocardial infarction and 301 of 306 patients who did not have a myocardial infarction for a detection rate (sensitivity) and false alarm rate (1-specificity) of 97.50 and 1.63%, respectively. A parallel control experiment using a single network but identical training information correctly identified 39 of 40 patients who had sustained a myocardial infarction and 287 of 306 patients who had not sustained a myocardial infarction (p = 0.003).
机译:当在训练为识别心肌梗塞的人工神经网络中优化检测率(敏感性)或错误警报率(特异性)时,总是要提高一个准确性,而要牺牲另一个准确性。为了克服这种损失,两个网络分别接受了针对具有不同心肌梗死可能性的患者群体的培训。一个网络接受了来自心肌梗死可能性较低的患者的临床模式集的培训,而另一个网络接受了来自心肌梗塞可能性较高的患者的模式集的培训。两个网络都分析了未知模式。如果在低风险患者身上训练的网络所产生的输出低于经验设定的阈值,则将该输出选择为诊断输出。如果输出高于该阈值,则将对高风险患者进行培训的网络的输出用作诊断输出。在40例患有心肌梗塞的患者中,双重网络正确地识别了39例患者,在306例未患有心肌梗塞的患者中,其中301例的检出率(敏感性)和误报率(1-特异性)分别为97.50和1.63%,分别。使用单个网络但具有相同训练信息的并行对照实验正确地确定了40例患有心肌梗塞的患者中的39例和306例未患有心肌梗塞的患者中的287例(p = 0.003)。

著录项

  • 来源
    《Neural computation》 |1992年第5期|772-780|共9页
  • 作者

    Baxt W;

  • 作者单位

    Department of Emergency Medicine and Medicine, University of California, San Diego Medical Center, San Diego, CA 92103-8676 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号