首页> 外文期刊>Neural computation >Identification Criteria and Lower Bounds for Perceptron-Like Learning Rules
【24h】

Identification Criteria and Lower Bounds for Perceptron-Like Learning Rules

机译:感知器样学习规则的识别标准和下界

获取原文
获取原文并翻译 | 示例

摘要

Perceptron-like learning rules are known to require exponentially many correction steps in order to identify boolean threshold functions exactly. We introduce criteria that are weaker than exact identification and investigate whether learning becomes significantly faster if exact identification is replaced by one of these criteria: probably approximately correct (PAC) identification, order identification, and sign identification. PAC identification is based on the learning paradigm introduced by Valiant (1984) and is known to be easier than exact identification. Order identification uses the fact that each threshold function induces an ordering relation on the input variables that can be represented by weights of linear size. Sign identification is based on a property of threshold functions known as unateness and requires only weights of constant size. We show that Perceptron-like learning rules cannot satisfy these criteria when the number of correction steps is to be bounded by a polynomial. We also present an exponential lower bound for order identification with the learning rules introduced by Littlestone (1988). Our results show that efficiency imposes severe restrictions on what can be learned with local learning rules.
机译:已知类似于感知器的学习规则需要指数地许多校正步骤,以便准确地识别布尔阈值函数。我们介绍了比精确识别更弱的标准,并研究了如果用以下标准之一代替精确识别,学习是否会变得明显更快:可能近似正确(PAC)识别,订单识别和标志识别。 PAC识别基于Valiant(1984)引入的学习范例,并且已知比精确识别更容易。顺序识别使用以下事实:每个阈值函数都会在输入变量上引起顺序关系,该关系可以由线性大小的权重表示。标志识别基于阈值函数的特性(称为不统一),并且仅需要恒定大小的权重。我们表明,当校正步骤的数量以多项式为边界时,类似感知器的学习规则不能满足这些条件。我们还介绍了Littlestone(1988)引入的学习规则的指数识别下界。我们的结果表明,效率对使用本地学习规则可以学到的内容施加了严格的限制。

著录项

  • 来源
    《Neural computation》 |1998年第1期|235-250|共16页
  • 作者

    Schmitt M;

  • 作者单位

    Institute for Theoretical Computer Science, Technische Universität Graz, Graz, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号