首页> 外文期刊>Neural computation >Bayesian Filtering in Spiking Neural Networks: Noise, Adaptation, and Multisensory Integration
【24h】

Bayesian Filtering in Spiking Neural Networks: Noise, Adaptation, and Multisensory Integration

机译:尖峰神经网络中的贝叶斯滤波:噪声,自适应和多感觉集成

获取原文
获取原文并翻译 | 示例

摘要

A key requirement facing organisms acting in uncertain dynamic environments is the real-time estimation and prediction of environmental states, based on which effective actions can be selected. While it is becoming evident that organisms employ exact or approximate Bayesian statistical calculations for these purposes, it is far less clear how these putative computations are implemented by neural networks in a strictly dynamic setting. In this work, we make use of rigorous mathematical results from the theory of continuous time point process filtering and show how optimal real-time state estimation and prediction may be implemented in a general setting using simple recurrent neural networks. The framework is applicable to many situations of common interest, including noisy observations, non-Poisson spike trains (incorporating adaptation), multisensory integration, and state prediction. The optimal network properties are shown to relate to the statistical structure of the environment, and the benefits of adaptation are studied and explicitly demonstrated. Finally, we recover several existing results as appropriate limits of our general setting.
机译:在不确定的动态环境中运行的生物面临的一项关键要求是对环境状态的实时估计和预测,在此基础上可以选择有效的措施。尽管很明显,有机体出于这些目的采用了精确或近似的贝叶斯统计计算,但仍不清楚如何在严格的动态环境中通过神经网络来实现这些假定的计算。在这项工作中,我们利用了连续时间点过程过滤理论中的严格数学结果,并展示了如何使用简单的递归神经网络在一般情况下实现最佳实时状态估计和预测。该框架适用于许多共同感兴趣的情况,包括嘈杂的观测,非泊松峰值序列(包含自适应),多传感器集成和状态预测。最佳网络属性显示与环境的统计结构有关,并且研究并明确展示了适应的好处。最后,我们恢复了几个现有结果,作为我们总体设置的适当限制。

著录项

  • 来源
    《Neural computation》 |2009年第5期|1277-1320|共44页
  • 作者单位

    Department of Electrical Engineering, Technion, Haifa 32000, Israel;

    Department of Electrical Engineering, Technion, Haifa 32000, Israel;

    Department of Electrical Engineering, Technion, Haifa 32000, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号