首页> 外文期刊>Neural computation >A Computationally Efficient Method for Nonparametric Modeling of Neural Spiking Activity with Point Processes
【24h】

A Computationally Efficient Method for Nonparametric Modeling of Neural Spiking Activity with Point Processes

机译:基于点过程的神经尖峰活动非参数建模的一种计算有效方法

获取原文
获取原文并翻译 | 示例

摘要

Point-process models have been shown to be useful in characterizing neural spiking activity as a function of extrinsic and intrinsic factors. Most point-process models of neural activity are parametric, as they are often efficiently computable. However, if the actual point process does not lie in the assumed parametric class of functions, misleading inferences can arise. Nonparametric methods are attractive due to fewer assumptions, but computation in general grows with the size of the data. We propose a computationally efficient method for nonparametric maximum likelihood estimation when the conditional intensity function, which characterizes the point process in its entirety, is assumed to be a Lipschitz continuous function but otherwise arbitrary. We show that by exploiting much structure, the problem becomes efficiently solvable. We next demonstrate a model selection procedure to estimate the Lipshitz parameter from data, akin to the minimum description length principle and demonstrate consistency of our estimator under appropriate assumptions. Finally, we illustrate the effectiveness of our method with simulated neural spiking data, goldfish retinal ganglion neural data, and activity recorded in CA1 hippocampal neurons from an awake behaving rat. For the simulated data set, our method uncovers a more compact representation of the conditional intensity function when it exists. For the goldfish and rat neural data sets, we show that our nonparametric method gives a superior absolute goodness-of-fit measure used for point processes than the most common parametric and splines-based approaches.
机译:点过程模型已被证明可用于表征作为外部和内在因素的函数的神经突刺活动。神经活动的大多数点过程模型都是参数化的,因为它们通常可以有效地计算。但是,如果实际的点过程不属于假定的函数参数类别,则可能会产生误导性推论。非参数方法由于较少的假设而具有吸引力,但是计算通常随数据的大小而增长。当条件强度函数(整体上描述点过程的特征)假定为Lipschitz连续函数,但假定为任意函数时,我们提出了一种计算有效的非参数最大似然估计方法。我们表明,通过利用很多结构,问题可以有效地解决。接下来,我们将展示一种模型选择程序,该过程可以从数据中估算Lipshitz参数,类似于最小描述长度原理,并在适当的假设下展示我们的估算器的一致性。最后,我们用模拟的神经峰值数据,金鱼视网膜神经节神经数据以及从行为清醒的大鼠CA1海马神经元中记录的活动说明了我们方法的有效性。对于模拟数据集,我们的方法发现条件强度函数存在时的更紧凑表示形式。对于金鱼和大鼠神经数据集,我们表明,与最常见的基于参数和基于样条的方法相比,我们的非参数方法可为点过程提供出色的绝对拟合优度度量。

著录项

  • 来源
    《Neural computation》 |2010年第8期|P.2002-2030|共29页
  • 作者单位

    Department of Electrical and Computer Engineering and the Neuroscience Program, University of Illinois, Urbana, 11 61801, U.S.A.;

    rnDepartment of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号