首页> 外文期刊>Neural computation >Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces
【24h】

Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces

机译:基于机器学习的脑机接口协调校准

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer interfaces (BCIs) allow users to control a computer application by brain activity as acquired (e.g., by EEG). In our classic machine learning approach to BCIs, the participants undertake a calibration measurement without feedback to acquire data to train the BCI system. After the training, the user can control a BCI and improve the operation through some type of feedback. However, not all BCI users are able to perform sufficiently well during feedback operation. In fact, a non-negligible portion of participants (estimated 15%-30%) cannot control the system (a BCI illiteracy problem, generic to all motor-imagery-based BCIs). We hypothesize that one main difficulty for a BCI user is the transition from offline calibration to online feedback. In this work, we investigate adaptive machine learning methods to eliminate offline calibration and analyze the performance of 11 volunteers in a BCI based on the modulation of sensorimotor rhythms. We present an adaptation scheme that individually guides the user. It starts with a subject-independent classifier that evolves to a subject-optimized state-of-the-art classifier within one session while the user interacts continuously. These initial runs use supervised techniques for robust coadaptive learning of user and machine. Subsequent runs use unsupervised adaptation to track the features' drift during the session and provide an unbiased measure of 6CI performance. Using this approach, without any offline calibration, six users, including one novice, obtained good performance after 3 to 6 minutes of adaptation. More important, this novel guided learning also allows participants with BCI illiteracy to gain significant control with the BCI in less than 60 minutes. In addition, one volunteer without sensorimotor idle rhythm peak at the beginning of the BCI experiment developed it during the course of the session and used voluntary modulation of its amplitude to control the feedback application.
机译:大脑-计算机接口(BCI)允许用户通过所获取的大脑活动(例如,通过EEG)来控制计算机应用程序。在我们经典的BCI机器学习方法中,参与者在没有反馈的情况下进行校准测量,以获取数据以训练BCI系统。培训后,用户可以控制BCI并通过某种类型的反馈来改善操作。但是,并非所有BCI用户都能在反馈操作期间表现良好。实际上,参与者的不可忽略的部分(估计为15%-30%)无法控制系统(BCI文盲问题,这对所有基于运动图像的BCI都是普遍的)。我们假设BCI用户的一个主要困难是从离线校准到在线反馈的过渡。在这项工作中,我们研究了适应性机器学习方法,以消除离线校准,并基于感觉运动节律的调节来分析11名志愿者在BCI中的表现。我们提出了一种适应方案,可以单独指导用户。它从与主题无关的分类器开始,该分类器在一个会话中演变为主题优化的最新分类器,同时用户不断进行交互。这些初始运行使用受监督的技术来对用户和机器进行鲁棒的协作学习。随后的运行使用无监督的适应性来跟踪会话期间功能的漂移,并提供对6CI性能的无偏度量。使用这种方法,无需任何离线校准,六名用户(包括一名新手)在经过3至6分钟的适应后即可获得良好的性能。更重要的是,这种新颖的引导式学习还使BCI文盲的参与者能够在不到60分钟的时间内获得BCI的有效控制。另外,在BCI实验开始时,一名没有感觉运动怠速节律峰值的志愿者在训练过程中将其开发出来,并使用其振幅的自愿调制来控制反馈的应用。

著录项

  • 来源
    《Neural computation》 |2011年第3期|p.791-816|共26页
  • 作者单位

    Machine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany;

    rnMachine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany;

    rnMachine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany Bernstein Focus: Neurotechnology, Berlin 10115, Germany;

    rnMachine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany Bernstein Focus: Neurotechnology, Berlin 10115, Germany Fraunhofer FIRST (IDA), Berlin 12489, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号