机译:基于细粒度组件条件类标记的改进的生成半监督学习
Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, U.S.A.;
Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, U.S.A.;
Department of Electrical Engineering and Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802, U.S.A.;
Center for NMR Research, Radiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A.;
机译:基于最大熵原理的混合生成分类器的半监督学习
机译:基于多决策标记和深度特征学习的高光谱图像半监督分类
机译:半监督机器故障分类的联合标签一致字典学习和自适应标签预测
机译:具有细粒度组件的半监督混合建模-条件类标记和转换推理
机译:基于细粒度组件条件类标记的新型生成半监督学习
机译:基于模糊性的主动学习框架可增强区分性和生成性分类器的高光谱图像分类性能
机译:Bayesian VolumeGric自动产生模型,用于更好的半体验学习