首页> 外文期刊>Neural computation >Analytical Integrate-and-Fire Neuron Models with Conductance-Based Dynamics and Realistic Postsynaptic Potential Time Course for Event-Driven Simulation Strategies
【24h】

Analytical Integrate-and-Fire Neuron Models with Conductance-Based Dynamics and Realistic Postsynaptic Potential Time Course for Event-Driven Simulation Strategies

机译:具有事件传导模拟策略的基于电导的动力学和逼真的突触后时间时程的分析积分和发射神经元模型

获取原文
获取原文并翻译 | 示例

摘要

In a previous paper (Rudolph & Destexhe, 2006), we proposed various models, the gIF neuron models, of analytical integrate-and-fire (IF) neurons with conductance-based (COBA) dynamics for use in event-driven simulations. These models are based on an analytical approximation of the differential equation describing the IF neuron with exponential synaptic conductances and were successfully tested with respect to their response to random and oscillating inputs. Because they are analytical and mathematically simple, the gIF models are best suited for fast event-driven simulation strategies. However, the drawback of such models is they rely on a nonrealistic postsynaptic potential (PSP) time course, consisting of a discontinuous jump followed by a decay governed by the membrane time constant. Here, we address this limitation by conceiving an analytical approximation of the COBA IF neuron model with the full PSP time course. The subthreshold and suprathreshold response of this gIF4 model reproduces remarkably well the postsynaptic responses of the numerically solved passive membrane equation subject to conductance noise, while gaining at least two orders of magnitude in computational performance. Although the analytical structure of the gIF4 model is more complex than that of its predecessors due to the necessity of calculating future spike times, a simple and fast algorithmic implementation for use in large-scale neural network simulations is proposed.
机译:在以前的论文中(Rudolph&Destexhe,2006),我们提出了具有电导基础(COBA)动力学的分析集成-发射(IF)神经元的各种模型,即gIF神经元模型,用于事件驱动的仿真。这些模型基于描述具有指数突触电导的IF神经元的微分方程的解析近似,并已成功测试了它们对随机和振荡输入的响应。由于gIF模型具有解析性且数学上很简单,因此最适合快速事件驱动的仿真策略。但是,此类模型的缺点是它们依赖于不现实的突触后电位(PSP)时间过程,该过程由不连续的跳跃和随后由膜时间常数控制的衰减组成。在这里,我们通过设想具有完整PSP时间过程的COBA IF神经元模型的解析近似来解决此限制。此gIF4模型的亚阈值和亚阈值以上响应可很好地重现受电导噪声影响的数值求解被动膜方程的突触后响应,同时获得至少两个数量级的计算性能。尽管由于需要计算未来的尖峰时间,gIF4模型的分析结构比其先前的模型更为复杂,但仍提出了一种用于大规模神经网络仿真的简单快速算法实现。

著录项

  • 来源
    《Neural computation》 |2012年第6期|p.1426-1461|共36页
  • 作者单位

    Unite de Neuroscience Integratives et Computationnelles, CNRS,91198 Gif-sur-Yvette, France;

    Unite de Neuroscience Integratives et Computationnelles, CNRS,91198 Gif-sur-Yvette, France;

    Unite de Neuroscience Integratives et Computationnelles, CNRS,91198 Gif-sur-Yvette, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号