首页> 外文期刊>Neural computation >Unsupervised Learning of Generative and Discriminative Weights Encoding Elementary Image Components in a Predictive Coding Model of Cortical Function
【24h】

Unsupervised Learning of Generative and Discriminative Weights Encoding Elementary Image Components in a Predictive Coding Model of Cortical Function

机译:皮层功能预测编码模型中编码基本图像分量的生成和区分权重的无监督学习

获取原文
获取原文并翻译 | 示例

摘要

A method is presented for learning the reciprocal feedforward and feedback connections required by the predictive coding model of cortical function. When this method is used, feedforward and feedback connections are learned simultaneously and independently in a biologically plausible manner. The performance of the proposed algorithm is evaluated by applying it to learning the elementary components of artificial and natural images. For artificial images, the bars problem is employed, and the proposed algorithm is shown to produce state-of-the-art performance on this task. For natural images, components resembling Gabor functions are learned in the first processing stage, and neurons responsive to corners are learned in the second processing stage. The properties of these learned representations are in good agreement with neurophysi-ological data from V1 and V2. The proposed algorithm demonstrates for the first time that a single computational theory can explain the formation of cortical RFs and also the response properties of cortical neurons once those RFs have been learned.
机译:提出了一种用于学习皮层功能的预测编码模型所需的相互前馈​​和反馈连接的方法。使用此方法时,会以生物学上合理的方式同时独立地学习前馈和反馈连接。通过将其应用于学习人工和自然图像的基本成分,可以评估所提出算法的性能。对于人造图像,采用了条形问题,并且所提出的算法在该任务上产生了最新的性能。对于自然图像,在第一处理阶段学习类似于Gabor函数的成分,而在第二处理阶段学习对角的响应神经元。这些学习的表示的属性与V1和V2的神经生理学数据非常吻合。所提出的算法首次证明,单一的计算理论可以解释皮质RF的形成以及一旦了解了皮质RF的皮质神经元的响应特性。

著录项

  • 来源
    《Neural computation》 |2012年第1期|p.60-103|共44页
  • 作者

    M. W. Spratling;

  • 作者单位

    King's College London, Department of Informatics and Division of Engineering, London WCR2 2LS, U.K;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号