...
首页> 外文期刊>Neural computation >A Bio-Inspired, Computational Model Suggests Velocity Gradients of Optic Flow Locally Encode Ordinal Depth at Surface Borders and Globally They Encode Self-Motion
【24h】

A Bio-Inspired, Computational Model Suggests Velocity Gradients of Optic Flow Locally Encode Ordinal Depth at Surface Borders and Globally They Encode Self-Motion

机译:一种受生物启发的计算模型表明,光流的速度梯度在表面边界局部编码有序深度,并在全局范围内编码自运动

获取原文
获取原文并翻译 | 示例
           

摘要

Visual navigation requires the estimation of self-motion as well as the segmentation of objects from the background. We suggest a definition of local velocity gradients to compute types of self-motion, segment objects, and compute local properties of optical flow fields, such as divergence, curl, and shear. Such velocity gradients are computed as velocity differences measured locally tangent and normal to the direction of flow. Then these differences are rotated according to the local direction of flow to achieve independence of that direction. We propose a bio-inspired model for the computation of these velocity gradients for video sequences. Simulation results show that local gradients encode ordinal surface depth, assuming self-motion in a rigid scene or object motions in a nonrigid scene. For translational self-motion velocity, gradients can be used to distinguish between static and moving objects. The information about ordinal surface depth and self-motion can help steering control for visual navigation.
机译:视觉导航需要估计自身运动以及从背景中分割出对象。我们建议定义局部速度梯度,以计算自运动,分段对象的类型,并计算光流场的局部属性,例如发散,卷曲和剪切。将这种速度梯度计算为局部切线并垂直于流动方向测得的速度差。然后,根据局部流动方向旋转这些差异,以实现该方向的独立性。我们提出了一个受生物启发的模型,用于计算视频序列的这些速度梯度。仿真结果表明,假设在刚性场景中发生自运动或在非刚性场景中发生物体运动,局部梯度会编码有序表面深度。对于平移自运动速,可以使用梯度来区分静态对象和运动对象。有关顺序表面深度和自我运动的信息可以帮助进行视觉导航的转向控制。

著录项

  • 来源
    《Neural computation》 |2013年第9期|2421-2449|共29页
  • 作者单位

    Center for Computational Neuroscience and Neural Technology and Center of Excellence for Learning in Education, Science, and Technology, Boston University, Boston, MA 02215 U.S.A.;

    Institute for Neural Information Processing, University of Ulm, 89069 Ulm, Germany;

    Center of Excellence for Learning in Education, Science, and Technology, Boston University, Boston, MA 02215, U.S.A., and Institute for Neural Information Processing, University of Ulm, 89069 Ulm, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号