首页> 外文期刊>Neural computation >Impact of Spike Train Autostructure on Probability Distribution of Joint Spike Events
【24h】

Impact of Spike Train Autostructure on Probability Distribution of Joint Spike Events

机译:尖峰列车自动结构对联合尖峰事件概率分布的影响

获取原文
获取原文并翻译 | 示例

摘要

The discussion whether temporally coordinated spiking activity really exists and whether it is relevant has been heated over the past few years. To investigate this issue, several approaches have been taken to determine whether synchronized events occur significantly above chance, that is, whether they occur more often than expected if the neurons fire independently. Most investigations ignore or destroy the autostructure of the spiking activity of individual cells or assume Poissonian spiking as a model. Such methods that ignore the autostructure can significantly bias the coincidence statistics. Here, we study the influence of the autostructure on the probability distribution of coincident spiking events between tuples of mutually independent non-Poisson renewal processes. In particular, we consider two types of renewal processes that were suggested as appropriate models of experimental spike trains: a gamma and a log-normal process. For a gamma process, we characterize the shape of the distribution analytically with the Fano factor (FF_C). In addition, we perform Monte Carlo estimations to derive the full shape of the distribution and the probability for false positives if a different process type is assumed as was actually present. We also determine how manipulations of such spike trains, here dithering, used for the generation of surrogate data change the distribution of coincident events and influence the significance estimation. We find, first, that the width of the coincidence count distribution and its FF_C depend critically and in a nontrivial way on the detailed properties of the structure of the spike trains as characterized by the coefficient of variation C_v. Second, the dependence of the FF_C on the C_v is complex and mostly nonmonotonic. Third, spike dithering, even if as small as a fraction of the interspike interval, can falsify the inference on coordinated firing.
机译:在过去的几年中,有关时间协调的尖峰活动是否确实存在以及是否相关的讨论一直很激烈。为了研究此问题,已经采取了几种方法来确定同步事件是否比偶然事件明显发生得多,也就是说,如果神经元独立激发,它们是否比预期的发生得更多。大多数研究都忽略或破坏了单个细胞的尖峰活动的自动结构,或者以泊松尖峰为模型。忽略自动结构的此类方法可能会严重影响符合性统计。在这里,我们研究了自动结构对相互独立的非Poisson更新过程的元组之间同时发生尖峰事件的概率分布的影响。特别地,我们考虑了两种类型的更新过程,它们被建议作为实验峰值序列的适当模型:伽玛过程和对数正态过程。对于伽马过程,我们用法诺因子(FF_C)解析地描述分布的形状。此外,如果假设实际存在不同的过程类型,我们将执行蒙特卡洛估计以得出分布的完整形状和误报的概率。我们还确定了用于生成替代数据的这种尖峰序列(这里为抖动)的操纵如何改变同时发生事件的分布并影响重要性估计。首先,我们发现,重合计数分布的宽度及其FF_C严格且以非平凡的方式取决于以变异系数C_v为特征的尖峰列结构的详细属性。其次,FF_C对C_v的依赖性很复杂,并且大多是非单调的。第三,尖峰抖动即使很小,只有尖峰间隔的一小部分,也可能使对协同发射的推论无效。

著录项

  • 来源
    《Neural computation》 |2013年第5期|1123-1163|共41页
  • 作者单位

    Institute of Cognitive Science, University of Osnabrueck, 49069 Osnabrueck,Germany;

    Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Forschungszentrum Juelich, 52428 Juelich, Germany Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience, Forschungszentrum Juelich, 52428 Juelich, Germany Theoretical Systems Neurobiology, RWTH Aachen University, 52056 Aachen, Germany and RIKEN Brain Science Institute,2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan;

    Universite Paris Descartes, Laboratoire de Neurophysique et Physiologie, CNRS,75270 Paris Cedex 06, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号