首页> 外文期刊>Neural computation >Understanding Emergent Dynamics: Using a Collective Activity Coordinate of a Neural Network to Recognize Time-Varying Patterns
【24h】

Understanding Emergent Dynamics: Using a Collective Activity Coordinate of a Neural Network to Recognize Time-Varying Patterns

机译:了解紧急动力学:使用神经网络的集体活动坐标来识别时变模式

获取原文
获取原文并翻译 | 示例

摘要

In higher animals, complex and robust behaviors are produced by the microscopic details of large structured ensembles of neurons. I describe how the emergent computational dynamics of a biologically based neural network generates a robust natural solution to the problem of categorizing time-varying stimulus patterns such as spoken words or animal stereotypical behaviors. The recognition of these patterns is made difficult by their substantial variation in cadence and duration. The neural circuit behaviors used are similar to those associated with brain neural integrators. In the larger context described here, this kind of circuit becomes a building block of an entirely different computational algorithm for solving complex problems. While the network behavior is simulated in detail, a collective view is essential to understanding the results. A closed equation of motion for the collective variable describes an algorithm that quantitatively accounts for many aspects of the emergent network computation. The feedback connections and ongoing activity in the network shape the collective dynamics onto a reduced dimensionality manifold of activity space, which defines the algorithm and computation actually performed. The external inputs are weak and are not the dominant drivers of network activity.
机译:在高等动物中,神经元的大型结构体的微观细节会产生复杂而鲁棒的行为。我描述了基于生物学的神经网络的新兴计算动力学如何为分类时变刺激模式(例如口语单词或动物定型行为)的问题生成可靠的自然解决方案。由于节奏和持续时间的实质性变化,很难识别这些模式。所使用的神经回路行为类似于与脑神经积分器相关的行为。在这里描述的更大的上下文中,这种电路成为解决复杂问题的完全不同的计算算法的基础。在详细模拟网络行为的同时,集体视图对于理解结果至关重要。集体变量的封闭运动方程式描述了一种算法,该算法定量地说明了紧急网络计算的许多方面。网络中的反馈连接和正在进行的活动将集体动态塑造为活动空间的降维流形,这定义了实际执行的算法和计算。外部输入较弱,不是网络活动的主要驱动力。

著录项

  • 来源
    《Neural computation》 |2015年第10期|2011-2038|共28页
  • 作者

    Hopfield John J.;

  • 作者单位

    Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, U.S.A. hopfield@princeton.edu;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号