首页> 外文期刊>Neural computation >Using Multilayer Perceptron Computation to Discover Ideal Insect Olfactory Receptor Combinations in the Mosquito and Fruit Fly for an Efficient Electronic Nose
【24h】

Using Multilayer Perceptron Computation to Discover Ideal Insect Olfactory Receptor Combinations in the Mosquito and Fruit Fly for an Efficient Electronic Nose

机译:使用多层感知器计算在蚊子和果蝇中发现理想的昆虫嗅觉受体组合以获得高效的电子鼻

获取原文
获取原文并翻译 | 示例

摘要

The model organism, , and the mosquito use 60 and 79 odorant receptors, respectively, to sense their olfactory world. However, a commercial “electronic nose” in the form of an insect olfactory biosensor demands very low numbers of receptors at its front end of detection due to the difficulties of receptor/sensor integration and functionalization. In this letter, we demonstrate how computation via artificial neural networks (ANNs), in the form of multilayer perceptrons (MLPs), can be successfully incorporated as the signal processing back end of the biosensor to drastically reduce the number of receptors to three while still retaining 100% performance of odorant detection to that of a full complement of receptors. In addition, we provide a detailed performance comparison between and odorant receptors and demonstrate that receptors provide superior olfaction detection performance over for very low receptor numbers. The results from this study present the possibility of using the computation of MLPs to discover ideal biological olfactory receptors for an olfactory biosensor device to provide maximum classification performance of unknown odorants.
机译:模型有机体,和蚊子分别使用60和79种气味受体来感知它们的嗅觉世界。然而,由于受体/传感器整合和功能化的困难,昆虫嗅觉生物传感器形式的商业“电子鼻”在其检测前端需要非常低数量的受体。在这封信中,我们演示了如何通过多层感知器(MLP)形式的人工神经网络(ANN)进行计算,并将其成功地作为生物传感器的信号处理后端,从而将接收器的数量大幅减少至三个保留了与全部受体互补的100%的气味检测性能。此外,我们提供了与加味剂受体之间的详细性能比较,并证明了与非常低的受体数量相比,受体提供了出色的嗅觉检测性能。这项研究的结果表明,可以利用MLP的计算来发现理想的生物嗅觉受体,从而为嗅觉生物传感器设备提供最大的未知气味分类性能。

著录项

  • 来源
    《Neural computation》 |2015年第1期|171-201|共31页
  • 作者单位

    Department of Engineering Science, University of Auckland, Auckland 1142, New Zealand lbac004@aucklanduni.ac.nz;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号