首页> 外文期刊>Neural computation >Conditional Density Estimation with Dimensionality Reduction via Squared-Loss Conditional Entropy Minimization
【24h】

Conditional Density Estimation with Dimensionality Reduction via Squared-Loss Conditional Entropy Minimization

机译:通过平方损耗条件熵最小化进行降维的条件密度估计

获取原文
获取原文并翻译 | 示例

摘要

Regression aims at estimating the conditional mean of output given input. However, regression is not informative enough if the conditional density is multimodal, heteroskedastic, and asymmetric. In such a case, estimating the conditional density itself is preferable, but conditional density estimation (CDE) is challenging in high-dimensional space. A naive approach to coping with high dimensionality is to first perform dimensionality reduction (DR) and then execute CDE. However, a two-step process does not perform well in practice because the error incurred in the first DR step can be magnified in the second CDE step. In this letter, we propose a novel single-shot procedure that performs CDE and DR simultaneously in an integrated way. Our key idea is to formulate DR as the problem of minimizing a squared-loss variant of conditional entropy, and this is solved using CDE. Thus, an additional CDE step is not needed after DR. We demonstrate the usefulness of the proposed method through extensive experiments on various data sets, including humanoid robot transition and computer art.
机译:回归旨在估计给定输入的输出的条件均值。但是,如果条件密度是多峰,异方差和不对称的,则回归不够充分。在这种情况下,估计条件密度本身是可取的,但是条件密度估计(CDE)在高维空间中具有挑战性。应对高维度的天真的方法是先执行降维(DR),然后执行CDE。但是,两步过程在实践中效果不佳,因为可以在第二个CDE步骤中放大在第一个DR步骤中引起的错误。在这封信中,我们提出了一种新颖的单发程序,该程序以集成方式同时执行CDE和DR。我们的关键思想是将DR公式化为最小化条件熵平方损失变体的问题,这可以使用CDE解决。因此,在DR之后不需要额外的CDE步骤。我们通过对各种数据集(包括人形机器人过渡和计算机艺术)进行广泛的实验,证明了该方法的有效性。

著录项

  • 来源
    《Neural computation》 |2015年第1期|228-254|共27页
  • 作者

    Tangkaratt V; Xie N; Sugiyama M;

  • 作者单位

    Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan voot@sg.cs.titech.ac.jp;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号