首页> 外文期刊>Neural computation >An Empirical Overview of the No Free Lunch Theorem and Its Effect on Real-World Machine Learning Classification
【24h】

An Empirical Overview of the No Free Lunch Theorem and Its Effect on Real-World Machine Learning Classification

机译:免费午餐定理及其对现实世界机器学习分类的影响的经验概述

获取原文
获取原文并翻译 | 示例

摘要

A sizable amount of research has been done to improve the mechanisms for knowledge extraction such as machine learning classification or regression. Quite unintuitively, the no free lunch (NFL) theorem states that all optimization problem strategies perform equally well when averaged over all possible problems. This fact seems to clash with the effort put forth toward better algorithms. This letter explores empirically the effect of the NFL theorem on some popular machine learning classification techniques over real-world data sets.
机译:为了改善诸如机器学习分类或回归之类的知识提取机制,已经进行了大量研究。无直觉地,免费午餐(NFL)定理指出,对所有可能的问题取平均后,所有优化问题策略的效果都一样好。这个事实似乎与为更好的算法而付出的努力相冲突。这封信从经验上探讨了NFL定理对现实世界数据集上一些流行的机器学习分类技术的影响。

著录项

  • 来源
    《Neural computation》 |2016年第1期|216-228|共13页
  • 作者

    Gómez David; Rojas Alfonso;

  • 作者单位

    Telematics Engineering Department, Polytechnical University of Catalonia, Barcelona 08034, Spain david.gomez.guillen@entel.upc.edu;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号