首页> 外文期刊>Neural computation >Refined Spectral Clustering via Embedded Label Propagation
【24h】

Refined Spectral Clustering via Embedded Label Propagation

机译:通过嵌入式标签传播改进频谱聚类

获取原文
获取原文并翻译 | 示例

摘要

Spectral clustering is a key research topic in the field of machine learningrnand data mining. Most of the existing spectral clustering algorithms arernbuilt on gaussian Laplacian matrices, which is sensitive to parameters.rnWe propose a novel parameter-free distance-consistent locally linear embedding.rnThe proposed distance-consistent LLE can promise that edgesrnbetween closer data points are heavier.We also propose a novel improvedrnspectral clustering via embedded label propagation. Our algorithm isrnbuilt on two advancements of the state of the art. First is label propagation,rnwhich propagates a node’s labels to neighboring nodes according torntheir proximity.We perform standard spectral clustering on original datarnand assign each cluster with k-nearest data points and then we propagaternlabels through dense unlabeled data regions. Second is manifold learning,rnwhich has been widely used for its capacity to leverage the manifold structure of data points. Extensive experiments on various data sets validaternthe superiority of the proposed algorithm compared to state-of-theartrnspectral algorithms.
机译:谱聚类是机器学习和数据挖掘领域的关键研究主题。现有的大多数谱聚类算法都是建立在对参数敏感的高斯Laplacian矩阵上的。我们提出了一种新的无参数距离一致局部线性嵌入算法。提出的距离一致LLE可以保证较近数据点之间的边缘较重。还提出了一种通过嵌入标签传播的新型改进的光谱聚类算法。我们的算法建立在现有技术的两个进步上。首先是标签传播,即根据节点的邻近程度将节点的标签传播到相邻节点。我们对原始数据执行标准的光谱聚类,并为每个聚类分配k个最近的数据点,然后通过密集的未标记数据区域传播标签。其次是流形学习,因其利用数据点的流形结构而被广泛使用。与现有技术的光谱算法相比,在各种数据集上进行的大量实验验证了该算法的优越性。

著录项

  • 来源
    《Neural computation》 |2017年第12期|3381-3396|共16页
  • 作者单位

    Institute for Silk Road Research, Xian University of Finance and Economics,Xian 710100, China;

    OPTIMAL, Northwestern Polytechnical University, Xian 710072, China;

    Beijing Etrol Technologies Co., Beijing 100095, China;

    Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.;

    Department of Computer Science and Engineering, University of Texasat Arlington, Arlington, TX 76010, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号