首页> 外文期刊>Neural computation >Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks
【24h】

Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks

机译:用分布式新皮层神经网络解决约束满足问题

获取原文
获取原文并翻译 | 示例

摘要

Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.
机译:寻找能够满足外部输入和内部表示所施加的约束的动作对于决策至关重要。我们证明,由同质合作竞争模块组成的网络可以解决某些重要类别的约束满足问题(CSP),这些模块具有与在新皮层表面层中观察到的图案相似的连通性。优胜者通吃模块通过编程神经元来稀疏耦合,这些神经元将约束嵌入到了本来同类的模块化计算基质上。我们展示了将CSP平面四色图形着色,最大独立集和数独的任何实例嵌入此基板的规则,并提供了数学证明,以确保这些图形着色问题将收敛到解决方案。该网络由非饱和线性阈值神经元组成。它们缺乏正确的饱和度,因此整个网络可以探索由反复激励产生的不稳定动力学驱动的问题空间。探索的方向由约束神经元控制。尽管仅使用线性抑制约束就可以解决许多问题,但是当这些负约束通过非线性乘法抑制来实现时,针对难题的网络性能会大大受益。总体而言,我们的结果证明了网络计算中不稳定而不是稳定性的重要性,并提供了双重抑制机制在神经回路中的计算作用的深刻见解。

著录项

  • 来源
    《Neural computation》 |2018年第5期|1359-1393|共35页
  • 作者单位

    Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A., and Cedars-Sinai Medical Center, Departments of Neurosurgery, Neurology and Biomedical Sciences, Los Angeles, CA 90048, U.S.A;

    Nonlinear Systems Laboratory, Department of Mechanical Engineering and Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, U.S.A;

    Institute of Neuroinformatics, University and ETH Zurich, Zurich 8057, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号