首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Inductive Representation Learning via CNN for Partially-Unseen Attributed Networks
【24h】

Inductive Representation Learning via CNN for Partially-Unseen Attributed Networks

机译:通过CNN进行归纳表示,用于部分无奈的归属网络

获取原文
获取原文并翻译 | 示例

摘要

Network embedding aims to map a complex network into a low-dimensional vector space while maximally preserving the properties of the original network. An attributed network is a typical real-world network that models the relationships and attributes of real-world entities. Its analysis is of great significance in many applications. However, most such networks are incomplete with partially-known attributes, links and labels. Traditional network embedding methods are designed for a complete network and cannot be applied to a network with incomplete information. Thus, this work proposes an inductive embedding model to learn the robust representations for a partially-unseen attributed network. It is designed based on a multi-core convolutional neural network and a semi-supervised learning mechanism, which can preserve the properties of such a network and generate the effective representations for unseen nodes in a model training process. We evaluate its performance on the task of inductive node classification and community detection via three real-world attributed networks. Experimental results show that it significantly outperforms the state-of-the-art.
机译:网络嵌入的目的是将复杂网络映射到低维矢量空间,同时最大限度地保留原始网络的属性。一个归属网络是一个典型的真实网络,模拟现实世界实体的关系和属性。其分析在许多应用中具有重要意义。但是,大多数此类网络与部分已知的属性,链接和标签不完整。传统的网络嵌入方法是为完整的网络设计的,并且不能应用于具有不完整信息的网络。因此,该工作提出了一种感应嵌入模型,用于学习部分查看的归属网络的鲁棒表示。它基于多核卷积神经网络和半监督学习机制设计,可以保留这种网络的特性,并在模型训练过程中生成未经看不见的节点的有效表示。我们通过三个真实世界归属网络评估其对归纳节点分类和社区检测任务的性能。实验结果表明,它显着优于现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号