首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Customizable Reliable Privacy-Preserving Data Sharing in Cyber-Physical Social Networks
【24h】

Customizable Reliable Privacy-Preserving Data Sharing in Cyber-Physical Social Networks

机译:网络物理社交网络中可定制的可靠隐私保留数据共享

获取原文
获取原文并翻译 | 示例

摘要

Privacy leakage becomes increasingly serious because massive volumes of data are constantly shared in diverse booming cyber-physical social networks (CPSN). Differential privacy is one of the dominating privacy-preserving methods, but most of its extensions assume all data users share the same privacy requirement, which fails to satisfy various privacy expectations in practice. To address this issue, customizable privacy preservation based on differential privacy is a potentially promising countermeasure. However, we found that customizable protection will trigger the composition mechanism of differential privacy and leads to unexpected correlations among injected noises that weakens privacy protection and reveal more sensitive inforamtion. As a result, customizable privacy protection is vulnerable to two primary attacks: background knowledge attack and collusion attack. To optimize the tradeoff between customizable privacy preservation and data utility, we propose a customizable reliable differential privacy model (CRDP), which provides customizable protection on each individual while being attack-proof. We define social distance as the shortest path between two nodes, which is used as an index to customize the privacy protection levels, followed by quantitatively modeling the attacks under the framework of differential privacy. We develop a modified Laplacian mechanism in which the noise generation complies with a Markov stochastic process.Consequently, the correlations of noises are properly de-coupled so that CRDP can simultaneously minimize background knowledge attacks and eliminate collusion attacks in this particular scenario. The evaluation results from real-world datasets show the feasibility and superiority of CRDP in terms of customizable privacy preservation and reliable attack resistance.
机译:隐私泄漏变得越来越严重,因为在多样化蓬勃发展的网络社会社交网络(CPSN)中不断共享大规模的数据。差异隐私是主导的隐私保留方法之一,但大多数扩展都认为所有数据用户都共享相同的隐私要求,这未能在实践中满足各种隐私期望。为解决此问题,根据差异隐私的可定制隐私保存是一个潜在的承诺对策。然而,我们发现可定制的保护将触发差异隐私的组成机制,并导致注射噪声之间的意外相关性,削弱隐私保护和揭示更敏感的inforamtion。因此,可定制的隐私保护易受两个主要攻击:背景知识攻击和勾结攻击。为了优化可自​​定义的隐私保存和数据实用程序之间的权衡,我们提出了可定制的可靠差分隐私模型(CRDP),该模型(CRDP)为每个人提供可自定义的保护,同时攻击。我们将社交距离定义为两个节点之间的最短路径,该节点用作自定义隐私保护级别的索引,然后定量地建模差异隐私框架下的攻击。我们开发了一种改进的拉普拉斯机制,其中噪声产生符合Markov随机过程。噪声的相关性,噪声的相关性被适当地解耦,使得CRDP可以同时最大限度地减少背景知识攻击并消除这种特定情景中的勾结攻击。现实世界数据集的评估结果表明了CRDP在可定制的隐私保存和可靠的攻击性方面的可行性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号