首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >PSAC: Proactive Sequence-Aware Content Caching via Deep Learning at the Network Edge
【24h】

PSAC: Proactive Sequence-Aware Content Caching via Deep Learning at the Network Edge

机译:PSAC:通过网络边缘深入学习的主动序列感知内容缓存

获取原文
获取原文并翻译 | 示例

摘要

Compared with traditional ineffective methods, such as acquiring more spectrum and deploying more base stations, edge caching is a highly promising solution for increased data flow needs and has attracted considerable attention. However, owing to the lack of careful consideration of cached data, existing related methods neither reduce network load nor improve the quality of experience. In this study, we propose a proactive sequence-aware content caching strategy (PSAC). Specifically, for general content at the network edge and content with sequential features, PSAC_gen (based on a convolutional neural network) and PSAC_seq (based on an attention mechanism that can automatically capture sequential features), respectively, are proposed to implement proactive caching. Experiments demonstrate that the proposed deep learning content caching method can effectively improve user experience and reduce network load.
机译:与传统无效的方法相比,如获取更多频谱并部署更多基站,Edge高速缓存是一个高度有前途的解决方案,用于增加数据流量,并引起了相当大的关注。然而,由于缺乏仔细考虑缓存数据,现有的相关方法既不减少网络负荷也不会提高经验质量。在本研究中,我们提出了一个主动序列感知内容缓存策略(PSAC)。具体地,对于网络边缘的一般内容以及具有顺序特征的内容,PSAC_GEN(基于卷积神经网络)和PSAC_SEQ(基于可以自动捕获顺序特征的注意机制),以实现主动高速缓存。实验表明,所提出的深度学习内容缓存方法可以有效地提高用户体验并降低网络负载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号