首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Unsupervised Anomaly Detection in IoT Systems for Smart Cities
【24h】

Unsupervised Anomaly Detection in IoT Systems for Smart Cities

机译:智能城市IOT系统中的无监督异常检测

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection is critical in the Internet of Things (IoT) systems due to its wide applications for building smart cities, such as quality control in manufacturing, intrusion detection in system security, fault detection in system monitoring. Many existing schemes are problem specific and supervised approaches, which require domain knowledge and tremendous data labeling efforts. In this paper, we investigate unsupervised anomaly detection on multidimensional time series data in IoT systems, and develops a GRU-based Gaussian Mixture VAE scheme, called GGM-VAE. In particular, we employ Gated Recurrent Unit (GRU) cells to discover the correlations among time series data, and use Gaussian Mixture priors in the latent space to characterize the multimodal data. Several previous works assume simple distributions for Gaussian Mixture priors, resulting in insufficient ability to fully capture the data patterns. To overcome this issue, we design a model selection mechanism during the training process under the guidance of Bayesian Inference Criterion (BIC) to find the model which can well estimate the distribution in the Gaussian Mixture latent space. We conduct extensive simulations on four datasets and observe that our proposed scheme outperforms the state-of-the-art anomaly detection schemes and achieves up to 47.88% improvement in F1 scores on average.
机译:由于其在制造智能城市的广泛应用程序,如其广泛的应用,如系统安全性,在系统安全性,故障检测,系统监控中的侵入检测等互联网上,异常检测对于事物互联网(IOT)系统中的互联网版本是至关重要的。许多现有计划是特定的和监督方法,需要域知识和巨大的数据标签努力。在本文中,我们调查了对IOT系统中多维时间序列数据的无监督异常检测,并开发了一种称为GGM-VAE的GRU的高斯混合vAe方案。特别地,我们使用所需的经常性单元(GRU)单元来发现时间序列数据之间的相关性,并在潜在空间中使用高斯混合前沿来表征多模式数据。以前的几种作品假设高斯混合前沿的简单分布,导致完全捕获数据模式的能力不足。为了克服这个问题,我们在贝叶斯推理标准(BIC)的指导下设计培训过程中的模型选择机制,以找到能够很好地估计高斯混合潜空间中分布的模型。我们在四个数据集中进行广泛的模拟,并遵守我们所提出的方案优于最先进的异常检测计划,平均达到F1分数的增长率高达47.88%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号