首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Minimizing Influence of Rumors by Blockers on Social Networks: Algorithms and Analysis
【24h】

Minimizing Influence of Rumors by Blockers on Social Networks: Algorithms and Analysis

机译:在社交网络上阻止谣言的影响最小化:算法和分析

获取原文
获取原文并翻译 | 示例

摘要

Online social networks, such as Facebook, Twitter, and Wechat have become major social tools. The users can not only keep in touch with family and friends, but also send and share the instant information. However, in some practical scenarios, we need to take effective measures to control the negative information spreading, e.g., rumors spread over the networks. In this paper, we first propose the minimizing influence of rumors (MIR) problem, i.e., selecting a blocker set B with k nodes such that the users' total activation probability by rumor source set S is minimized. Then, we employ the classical independent cascade (IC) model as an information diffusion model. Based on the IC model, we prove that the objective function is monotone decreasing and non-submodular. To address the MIR problem effectively, we propose a two-stages method generating candidate set and selecting blockers for the general networks. Furthermore, we also study the MIR problem on the tree network and propose a dynamic programming guaranteeing the optimal solution. Finally, we evaluate proposed algorithms by simulations on synthetic and real-life social networks, respectively. Experimental results show our algorithms are superior to the comparative heuristic approaches, such as out-degree, betweenness centrality, and PageRank.
机译:在线社交网络,如Facebook,Twitter和微信已成为主要的社会工具。用户不仅可以与家人和朋友保持联系,还可以发送和共享即时信息。然而,在一些实际情况下,我们需要采取有效措施来控制负面信息传播,例如,谣言传播在网络上。在本文中,我们首先提出最小化谣言(MIR)问题的影响,即选择具有k节点的阻挡器集B,使得谣言源组S的总激活概率最小化。然后,我们使用经典的独立级联(IC)模型作为信息扩散模型。基于IC模型,我们证明客观函数是单调的减少和非亚膜形。为了有效地解决MIR问题,我们提出了一种生成候选集的双级方法,并为一般网络选择阻拦者。此外,我们还研究了树网络上的MIR问题,并提出了一种保证最佳解决方案的动态规划。最后,我们分别评估了综合性和现实生活社交网络的模拟所提出的算法。实验结果表明,我们的算法优于比较启发式方法,例如Out-Degres,之间的度过中心和PageRank。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号