首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Random Caching Optimization in Large-Scale Cache-Enabled Internet of Things Networks
【24h】

Random Caching Optimization in Large-Scale Cache-Enabled Internet of Things Networks

机译:大规模启用缓存的物联网网络中的随机缓存优化

获取原文
获取原文并翻译 | 示例

摘要

The introduction of cache can reduce unnecessary traffic load and improve latency in the wireless access networks, especially for wireless video broadcasting. But how cache impacts video broadcasting with scalable video coding (SVC) is still an open problem. In this paper, we analyze the optimization of random caching in a large-scale cache-enabled Internet of Things networks. Specifically, we propose to optimize the random caching strategy that aims to maximize the successful transmission probability (STP) of the video contents at edge base stations (BSs). To this end, by using the stochastic geometry theory, we derive analytical expression of STP by considering SVC to satisfy different levels of quality of service requirements. We develop a gradient-based iterative algorithm to search the local optimal solution for the general random caching strategy optimization problem. The asymptotical optimal caching strategy is obtained with a lower complexity. The closed-form STP is also obtained in high signal-to-noise ratio and particular cache size. Based on the closed-form STP expressions, the random caching strategy, i.e., caching probability of different video contents, is further optimized to enhance STP performance. Compare to different reference schemes, the proposed caching strategy improves the STP up to 18% and 21:6% with the low density of BSs and the high density of BSs, respectively.
机译:高速缓存的引入可以减少无线访问网络中不必要的流量负载并改善延迟,特别是对于无线视频广播而言。但是缓存如何通过可伸缩视频编码(SVC)影响视频广播仍然是一个未解决的问题。在本文中,我们分析了启用大规模缓存的物联网网络中随机缓存的优化。具体来说,我们建议优化随机缓存策略,该策略旨在最大化边缘基站(BS)上视频内容的成功传输概率(STP)。为此,通过使用随机几何理论,我们通过考虑SVC满足不同级别的服务质量要求来推导STP的解析表达式。我们开发了一种基于梯度的迭代算法,以搜索针对一般随机缓存策略优化问题的局部最优解。渐近最优缓存策略以较低的复杂度获得。还以高信噪比和特定的高速缓存大小获得了封闭形式的STP。基于封闭形式的STP表达式,进一步优化了随机缓存策略,即不同视频内容的缓存概率,以增强STP性能。与不同的参考方案相比,所提出的缓存策略分别在低密度基站和高密度基站下将STP分别提高了18%和21:6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号