首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Efficient Privacy-Preserving Machine Learning in Hierarchical Distributed System
【24h】

Efficient Privacy-Preserving Machine Learning in Hierarchical Distributed System

机译:分层分布式系统中的高效隐私保护机器学习

获取原文
获取原文并翻译 | 示例

摘要

With the dramatic growth of data in both amount and scale, distributed machine learning has become an important tool for the massive data to finish the tasks as prediction, classification, etc. However, due to the practical physical constraints and the potential privacy leakage of data, it is infeasible to aggregate raw data from all data owners for the learning purpose. To tackle this problem, the distributed privacy-preserving learning approaches are introduced to learn over all distributed data without exposing the real information. However, existing approaches have limits on the complicated distributed system. On the one hand, traditional privacy-preserving learning approaches rely on heavy cryptographic primitives on training data, in which the learning speed is dramatically slowed down due to the computation overheads. On the other hand, the complicated system architecture becomes a barrier in the practical distributed system. In this paper, we propose an efficient privacy-preserving machine learning scheme for hierarchical distributed systems. We modify and improve the collaborative learning algorithm. The proposed scheme not only reduces the overhead for the learning process but also provides the comprehensive protection for each layer of the hierarchical distributed system. In addition, based on the analysis of the collaborative convergency in different learning groups, we also propose an asynchronous strategy to further improve the learning efficiency of hierarchical distributed system. At the last, extensive experiments on real-world data are implemented to evaluate the privacy, efficacy, and efficiency of our proposed schemes.
机译:随着数据数量和规模的急剧增长,分布式机器学习已成为海量数据完成预测,分类等任务的重要工具。但是,由于实际的物理限制以及数据的潜在隐私泄漏,出于学习目的,汇总来自所有数据所有者的原始数据是不可行的。为了解决这个问题,引入了分布式隐私保护学习方法,以在不暴露真实信息的情况下对所有分布式数据进行学习。但是,现有方法在复杂的分布式系统上有局限性。一方面,传统的隐私保护学习方法依赖于训练数据上的沉重的密码原语,其中,由于计算开销,学习速度大大降低。另一方面,复杂的系统架构成为实际分布式系统的障碍。在本文中,我们提出了一种用于分层分布式系统的有效的隐私保护机器学习方案。我们修改和改进了协作学习算法。所提出的方案不仅减少了学习过程的开销,而且为分层分布式系统的每一层提供了全面的保护。另外,在分析不同学习群体的协作收敛性的基础上,我们还提出了一种异步策略,以进一步提高分层分布式系统的学习效率。最后,在现实世界中的数据上进行了广泛的实验,以评估我们提出的方案的隐私性,有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号