首页> 外文期刊>Nature >Monolithic piezoelectric control of soliton microcombs
【24h】

Monolithic piezoelectric control of soliton microcombs

机译:单层压电控制孤子微囊体

获取原文
获取原文并翻译 | 示例
           

摘要

High-speed actuation of laser frequency(1)is critical in applications using lasers and frequency combs(2,3), and is a prerequisite for phase locking, frequency stabilization and stability transfer among optical carriers. For example, high-bandwidth feedback control of frequency combs is used in optical-frequency synthesis(4), frequency division(5)and optical clocks(6). Soliton microcombs(7,8)have emerged as chip-scale frequency comb sources, and have been used in system-level demonstrations(9,10). Yet integrated microcombs using thermal heaters have limited actuation bandwidths(11,12)of up to 10 kilohertz. Consequently, megahertz-bandwidth actuation and locking of microcombs have only been achieved with off-chip bulk component modulators. Here we demonstrate high-speed soliton microcomb actuation using integrated piezoelectric components(13). By monolithically integrating AlN actuators(14)on ultralow-loss Si(3)N(4)photonic circuits(15), we demonstrate voltage-controlled soliton initiation, tuning and stabilization with megahertz bandwidth. The AlN actuators use 300 nanowatts of power and feature bidirectional tuning, high linearity and low hysteresis. They exhibit a flat actuation response up to 1 megahertz-substantially exceeding bulk piezo tuning bandwidth-that is extendable to higher frequencies by overcoming coupling to acoustic contour modes of the chip. Via synchronous tuning of the laser and the microresonator, we exploit this ability to frequency-shift the optical comb spectrum (that is, to change the comb's carrier-envelope offset frequency) and make excursions beyond the soliton existence range. This enables a massively parallel frequency-modulated engine(16,17)for lidar (light detection and ranging), with increased frequency excursion, lower power and elimination of channel distortions resulting from the soliton Raman self-frequency shift. Moreover, by modulating at a rate matching the frequency of high-overtone bulk acoustic resonances(18), resonant build-up of bulk acoustic energy allows a 14-fold reduction of the required driving voltage, making it compatible with CMOS (complementary metal-oxide-semiconductor) electronics. Our approach endows soliton microcombs with integrated, ultralow-power and fast actuation, expanding the repertoire of technological applications of microcombs.By monolithically integrating piezoelectric actuators on ultralow-loss photonic circuits, soliton microcombs-a spectrum of sharp lines over a range of optical frequencies-can be modulated at high speeds with megahertz bandwidths.
机译:激光频率(1)的高速致动在使用激光器和频率梳理(2,3)的应用中至关重要,并且是光学载体之间的锁相,频率稳定和稳定性传递的先决条件。例如,频率梳理的高带宽反馈控制用于光学频率合成(4),频分(5)和光学时钟(6)。孤子微囊体(7,8)已成为芯片级频率梳源,并已用于系统级演示(9,10)。然而,使用热加热器的集成小组织具有限制带宽(11,12),可达10千赫兹。因此,仅通过片外散装部件调制器实现了Megahertz-带宽致动和锁定微囊虫。在这里,我们展示了使用集成压电部件(13)的高速孤子微压致动。通过单片丢失Si(3)光电路(15)上的单片致动器(14),通过Megahertz带宽展示了电压控制的孤子启动,调谐和稳定。 ALN执行器使用300纳瓦的功率,并具有双向调谐,高线性度和低滞后。它们具有最高1兆赫的扁平致动响应 - 基本上超过散装压电调谐带宽 - 通过克服耦合到芯片的声学轮廓模式来扩展到较高频率。通过激光器和微谐振器的同步调谐,我们利用这种频率移位光学梳谱的能力(即改变梳子的载波信封偏移频率),并超越孤子存在范围之外的偏移。这使得LIDAR(光检测和测距)的大规模平行频率调制发动机(16,17),频率偏移增加,较低的功率和消除由Soliton拉曼自频移位产生的通道失真。此外,通过以匹配高泛孔散装谐振(18)的频率的速率调制,散装声能量的谐振积聚允许降低所需的驱动电压的14倍,使其与CMOS相兼容(互补金属 - 氧化物半导体)电子器件。我们的方法赋予孤子微囊体,具有集成,超级功率和快速致动,扩展了微囊带的技术应用的曲目。通过单片集成在超级损耗光子电路上的压电致动器,Soliton小微囊件 - 在一系列光学频率范围内的尖锐线。 - 使用Megahertz带宽以高速调制。

著录项

  • 来源
    《Nature》 |2020年第7816期|385-390|共6页
  • 作者单位

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

    Purdue Univ OxideMEMS Lab W Lafayette IN USA;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland|Frequency Div Boulder CO USA;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland|Purdue Univ OxideMEMS Lab W Lafayette IN USA;

    Swiss Fed Inst Technol Lausanne Lab Photon Quantum Measurements EPFL Lausanne Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号