首页> 外文期刊>Nature >Stationary entangled radiation from micromechanical motion
【24h】

Stationary entangled radiation from micromechanical motion

机译:从微机械运动的固定缠结辐射

获取原文
获取原文并翻译 | 示例
       

摘要

Mechanical systems facilitate the development of a hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom(1), and entanglement is essential to realize quantum-enabled devices. Continuous-variable entangled fields-known as Einstein-Podolsky-Rosen (EPR) states-are spatially separated two-mode squeezed states that can be used for quantum teleportation and quantum communication(2). In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers(3), and at microwave frequencies Josephson circuits can serve as a nonlinear medium(4-6). An outstanding goal is to deterministically generate and distribute entangled states with a mechanical oscillator, which requires a carefully arranged balance between excitation, cooling and dissipation in an ultralow noise environment. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30-micrometre-long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40 decibels below the vacuum level. The motion of this micromechanical system correlates up to 50 photons per second per hertz, giving rise to a quantum discord that is robust with respect to microwave noise(7). Such generalized quantum correlations of separable states are important for quantum-enhanced detection(8) and provide direct evidence of the non-classical nature of the mechanical oscillator without directly measuring its state(9). This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects, with potential implications for sensing, open-system dynamics and fundamental tests of quantum gravity. In the future, similar onchip devices could be used to entangle subsystems on very different energy scales, such as microwave and optical photons.
机译:机械系统有助于开发包括电气,光学,原子和声学程度的混合量子技术(1),并且纠缠是必不可少的实现能量的设备。作为Einstein-Podolsky-Rosen(EPR)状态的连续变量纠缠的字段 - 空间分离的双模挤压状态可用于量子传送和量子通信(2)。在光学域中,通常使用非聚值光放大器(3)生成EPR状态,并且在微波频率下,Josephson电路可以用作非线性介质(4-6)。出色的目标是使用机械振荡器确定和分配缠绕状态,该机械振荡器需要在超级噪声环境中激发,冷却和耗散之间仔细安排平衡。在这里,我们观察到从参数驱动的30微米长硅纳米型振荡器的静止发射路径缠绕的微波辐射,通过3.40分贝在真空水平下挤压两个热模式的接头场操作器。该微机械系统的运动每赫兹每秒与每秒高达50光子,从而产生对微波噪声(7)稳健的量子不稳定。可分离状态的这种通用量子相关性对于量子增强检测(8)是重要的,并提供机械振荡器的非经典性质的直接证据,而不直接测量其状态(9)。这种非侵入性测量方案允许推断有关其他可接近物体的信息,具有对传感,开放系统动态和量子重力的基本测试的潜在影响。将来,类似的onchip设备可用于在非常不同的能量尺度上缠绕子系统,例如微波和光学光子。

著录项

  • 来源
    《Nature》 |2019年第7762期|480-483|共4页
  • 作者单位

    IST Austria Klosterneuburg Austria;

    IST Austria Klosterneuburg Austria;

    IST Austria Klosterneuburg Austria;

    IST Austria Klosterneuburg Austria;

    IST Austria Klosterneuburg Austria;

    IST Austria Klosterneuburg Austria;

    IST Austria Klosterneuburg Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号