首页> 外文期刊>Nature >Stationary entangled radiation from micromechanical motion
【24h】

Stationary entangled radiation from micromechanical motion

机译:微机械运动的平稳纠缠辐射

获取原文
获取原文并翻译 | 示例
       

摘要

Mechanical systems facilitate the development of a hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom(1), and entanglement is essential to realize quantum-enabled devices. Continuous-variable entangled fields-known as Einstein-Podolsky-Rosen (EPR) states-are spatially separated two-mode squeezed states that can be used for quantum teleportation and quantum communication(2). In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers(3), and at microwave frequencies Josephson circuits can serve as a nonlinear medium(4-6). An outstanding goal is to deterministically generate and distribute entangled states with a mechanical oscillator, which requires a carefully arranged balance between excitation, cooling and dissipation in an ultralow noise environment. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30-micrometre-long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40 decibels below the vacuum level. The motion of this micromechanical system correlates up to 50 photons per second per hertz, giving rise to a quantum discord that is robust with respect to microwave noise(7). Such generalized quantum correlations of separable states are important for quantum-enhanced detection(8) and provide direct evidence of the non-classical nature of the mechanical oscillator without directly measuring its state(9). This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects, with potential implications for sensing, open-system dynamics and fundamental tests of quantum gravity. In the future, similar onchip devices could be used to entangle subsystems on very different energy scales, such as microwave and optical photons.
机译:机械系统促进了包括电,光,原子和声自由度(1)的混合量子技术的发展,并且纠缠对于实现启用量子的设备至关重要。被称为爱因斯坦-波多尔斯基-罗森(EPR)状态的连续变量纠缠场是空间分离的双模压缩态,可用于量子隐形传态和量子通信(2)。在光域中,通常使用非简并光放大器(3)生成EPR状态,并且在微波频率下,约瑟夫森电路可以用作非线性介质(4-6)。一个杰出的目标是使用机械振荡器确定性地生成并分配纠缠态,这需要在超低噪声环境中精心安排激励,冷却和耗散之间的平衡。在这里,我们观察到由参数驱动的30微米长的硅纳米串振荡器发出的与路径纠缠的微波辐射的稳态发射,将两种热模的联合场算子压缩到真空度以下3.40分贝。这种微机械系统的运动每秒最多可将50个光子/赫兹关联起来,从而产生了一种对微波噪声具有鲁棒性的量子不和谐现象(7)。这种可分离状态的广义量子相关性对于量子增强检测非常重要(8),并提供了机械振荡器非经典性质的直接证据,而无需直接测量其状态(9)。这种非侵入性的测量方案可以推断有关原本无法访问的物体的信息,对传感,开放系统动力学和量子引力的基本测试具有潜在的影响。将来,类似的片上设备可能会被用于纠缠子系统,这些子系统的能量尺度差异很大,例如微波和光子。

著录项

  • 来源
    《Nature》 |2019年第7762期|480-483|共4页
  • 作者单位

    IST Austria, Klosterneuburg, Austria;

    IST Austria, Klosterneuburg, Austria;

    IST Austria, Klosterneuburg, Austria;

    IST Austria, Klosterneuburg, Austria;

    IST Austria, Klosterneuburg, Austria;

    IST Austria, Klosterneuburg, Austria;

    IST Austria, Klosterneuburg, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:17:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号