首页> 外文期刊>Nature >Li metal deposition and stripping in a solid-state battery via Coble creep
【24h】

Li metal deposition and stripping in a solid-state battery via Coble creep

机译:通过Coble蠕变在固态电池中沉积和剥离锂金属

获取原文
获取原文并翻译 | 示例
       

摘要

Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be(1,2) up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 10(10) MIEC cylinders/solid electrolyte/LiFePO4-shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1x excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.By containing lithium metal within oriented tubes of a mixed ionic-electronic conductor, a 3D anode for lithium metal batteries is produced that overcomes chemomechanical stability issues at the electrolyte interface.
机译:固态锂金属电池需要在锂内部容纳电化学产生的机械应力:对于135毫伏的超电势,该应力可以是(1,2)高达1吉帕斯卡。尽管需要与移动的腐蚀性锂金属进行物理接触,但仍要保持固体结构的机械和电化学稳定性。使用原位透射电子显微镜,我们研究了在由混合离子电子导体(MIEC)制成的大量平行中空小管中容纳的金属锂或钠的沉积和剥离。在这里,我们表明这些碱金属(作为单晶)可以通过沿着MIEC /金属相边界的主要扩散Coble蠕变而从小管中生长出来并缩回小管中。与固体电解质不同,许多MIEC在与锂接触时具有电化学稳定性(也就是说,在平衡相图上与金属锂有直接的连接线),因此这种Coble蠕变机理可以有效缓解应力,保持电子和离子接触,消除固体电解质相间碎屑,并允许锂在10微米的距离内可逆沉积/剥离100个循环。由大约10(10)个MIEC气瓶/固体电解质/ LiFePO4-组成的全厘米全电池显示每克LiFePO4约164毫安小时的高容量,并且在超过50循环的过程中几乎没有降解,起始为过量1倍李的建模表明,该设计对MIEC材料的选择不敏感,其通道宽约100纳米,深约10-100微米。 MIEC通道中锂金属的行为表明,使用这种体系结构可以克服固态锂金属电池中金属-电解质界面的化学和机械稳定性问题。通过在混合离子电子的定向管中包含锂金属作为导体,可生产用于锂金属电池的3D阳极,该阳极克服了电解质界面处的化学机械稳定性问题。

著录项

  • 来源
    《Nature》 |2020年第7794期|251-255|共5页
  • 作者单位

    MIT Dept Nucl Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA|MIT Dept Mat Sci & Engn Cambridge MA 02139 USA|Fujian Normal Univ Coll Environm Sci & Engn Fuzhou Peoples R China;

    MIT Dept Nucl Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA|MIT Dept Mat Sci & Engn Cambridge MA 02139 USA;

    MIT Dept Nucl Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA|MIT Dept Mat Sci & Engn Cambridge MA 02139 USA|Fujian Normal Univ Coll Environm Sci & Engn Fuzhou Peoples R China|Hong Kong Polytech Univ Dept Appl Phys Hong Kong Peoples R China;

    Univ Texas Austin Texas Mat Inst Austin TX 78712 USA|Univ Texas Austin Mat Sci & Engn Program Austin TX 78712 USA;

    MIT Dept Elect Engn & Comp Sci Cambridge MA 02139 USA;

    Univ Cent Florida Adv Mat Proc & Anal Ctr Dept Mat Sci & Engn Orlando FL 32816 USA;

    Hong Kong Polytech Univ Dept Appl Phys Hong Kong Peoples R China;

    Univ Sydney Sch Aerosp Mech & Mechatron Engn Ctr Adv Mat Technol Sydney NSW Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:28:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号