首页> 外文期刊>Nature >An apical hypoxic niche sets the pace of shoot meristem activity
【24h】

An apical hypoxic niche sets the pace of shoot meristem activity

机译:根尖缺氧的生态位决定了芽分生组织的活动速度

获取原文
获取原文并翻译 | 示例
       

摘要

Complex multicellular organisms evolved on Earth in an oxygen-rich atmosphere(1); their tissues, including stem-cell niches, require continuous oxygen provision for efficient energy metabolism(2). Notably, the maintenance of the pluripotent state of animal stem cells requires hypoxic conditions, whereas higher oxygen tension promotes cell differentiation(3). Here we demonstrate, using a combination of genetic reporters and in vivo oxygen measurements, that plant shoot meristems develop embedded in a low-oxygen niche, and that hypoxic conditions are required to regulate the production of new leaves. We show that hypoxia localized to the shoot meristem inhibits the proteolysis of an N-degron-pathway(4,5) substrate known as LITTLE ZIPPER 2 (ZPR2)-which evolved to control the activity of the class-III homeodomain-leucine zipper transcription factors(6-8)-and thereby regulates the activity of shoot meristems. Our results reveal oxygen as a diffusible signal that is involved in the control of stem-cell activity in plants grown under aerobic conditions, which suggests that the spatially distinct distribution of oxygen affects plant development. In molecular terms, this signal is translated into transcriptional regulation by the N-degron pathway, thereby linking the control of metabolic activity to the regulation of development in plants.
机译:复杂的多细胞生物是在富含氧气的大气中在地球上演化的(1);它们的组织(包括干细胞小生境)需要持续的氧气供应以有效地进行能量代谢(2)。值得注意的是,维持动物干细胞的多能状态需要缺氧条件,而较高的氧张力会促进细胞分化(3)。在这里,我们证明了使用遗传报告基因和体内氧气测量的结合,植物嫩芽分生组织发育成嵌入低氧生态位,并且需要低氧条件来调节新叶的产生。我们表明,缺氧定位于芽分生组织抑制了N-degron-pathway(4,5)底物称为小ZIPPER 2(ZPR2)的蛋白水解-演变为控制III类同源域-亮氨酸拉链转录的活性因子(6-8)-从而调节芽分生组织的活性。我们的结果表明,氧作为一种可扩散信号,参与有氧条件下生长的植物中干细胞活性的控制,这表明氧在空间上的独特分布会影响植物的发育。从分子角度讲,该信号通过N-德格隆途径转化为转录调控,从而将代谢活性的控制与植物发育的调控联系起来。

著录项

  • 来源
    《Nature》 |2019年第7758期|714-717|共4页
  • 作者单位

    Rhein Westfal TH Aachen, Inst Biol 1, Aachen, Germany|Scuola Super Sant Anna, Inst Life Sci, Pisa, Italy;

    Rhein Westfal TH Aachen, Inst Biol 1, Aachen, Germany;

    Rhein Westfal TH Aachen, Inst Biol 1, Aachen, Germany;

    Rhein Westfal TH Aachen, Inst Biol 1, Aachen, Germany;

    Rhein Westfal TH Aachen, Inst Biol 1, Aachen, Germany;

    Scuola Super Sant Anna, Inst Life Sci, Pisa, Italy;

    Heidelberg Univ, Dept Stem Cell Biol, Ctr Organismal Studies, Heidelberg, Germany|Salk Inst Biol Studies, Plant Mol & Cellular Biol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA;

    Heidelberg Univ, Dept Stem Cell Biol, Ctr Organismal Studies, Heidelberg, Germany;

    Univ Copenhagen, Freshwater Biol Lab, Dept Biol, Copenhagen, Denmark;

    Rhein Westfal TH Aachen, Inst Biol 1, Aachen, Germany;

    Scuola Super Sant Anna, Inst Life Sci, Pisa, Italy|Univ Pisa, Biol Dept, Pisa, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:17:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号