首页> 外文期刊>Nature >A two-qubit gate between phosphorus donor electrons in silicon
【24h】

A two-qubit gate between phosphorus donor electrons in silicon

机译:硅中磷供体电子之间的二量子位门

获取原文
获取原文并翻译 | 示例
       

摘要

Electron spin qubits formed by atoms in silicon have large (tens of millielectronvolts) orbital energies and weak spin-orbit coupling, giving rise to isolated electron spin ground states with coherence times of seconds(1,2). High-fidelity (more than 99.9 per cent) coherent control of such qubits has been demonstrated(3), promising an attractive platform for quantum computing. However, inter-qubit coupling-which is essential for realizing large-scale circuits in atom-based qubits-has not yet been achieved. Exchange interactions between electron spins(4,5) promise fast (gigahertz) gate operations with two-qubit gates, as recently demonstrated in gate-defined silicon quantum dots(6-10). However, creating a tunable exchange interaction between two electrons bound to phosphorus atom qubits has not been possible until now. This is because it is difficult to determine the atomic distance required to turn the exchange interaction on and off while aligning the atomic circuitry for high-fidelity, independent spin readout. Here we report a fast (about 800 picoseconds) root SWAP two-qubit exchange gate between phosphorus donor electron spin qubits in silicon using independent single-shot spin readout with a readout fidelity of about 94 per cent on a complete set of basis states. By engineering qubit placement on the atomic scale, we provide a route to the realization and efficient characterization of multi-qubit quantum circuits based on donor qubits in silicon.
机译:由硅中的原子形成的电子自旋量子位具有大(数十毫伏)的轨道能量和弱的自旋轨道耦合,从而产生了相干时间为几秒钟的孤立的电子自旋基态(1,2)。已经证明了对这种量子位的高保真(超过99.9%)的一致控制(3),为量子计算提供了一个有吸引力的平台。但是,尚未实现量子位间耦合(这对于在基于原子的量子位中实现大规模电路至关重要)。电子自旋之间的交换相互作用(4,5)保证了具有两个量子位栅极的快速(千兆赫)栅极操作,正如最近在栅极定义的硅量子点(6-10)中所证明的那样。但是,到目前为止,在结合到磷原子量子位的两个电子之间创建可调的交换相互作用是不可能的。这是因为在对齐原子电路以实现高保真,独立的自旋读出时,很难确定打开和关闭交换交互所需的原子距离。在这里,我们报告了硅中磷供体电子自旋量子位之间的快速(约800皮秒)根SWAP两量子位交换门,它使用独立的单次自旋读出,在一组完整的基态上的保真度约为94%。通过在原子尺度上工程化量子位的放置,我们提供了一种基于硅中施主量子位的多量子位量子电路的实现和有效表征的途径。

著录项

  • 来源
    《Nature》 |2019年第7765期|371-375|共5页
  • 作者单位

    Univ New South Wales, Sch Phys, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW, Australia;

    Univ New South Wales, Sch Phys, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW, Australia;

    Univ New South Wales, Sch Phys, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW, Australia;

    Univ New South Wales, Sch Phys, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW, Australia;

    Univ New South Wales, Sch Phys, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW, Australia;

    Univ New South Wales, Sch Phys, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:17:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号