首页> 外文期刊>Nature >Hidden magnetic excitation in the pseudogap phase of a high- T_c superconductor
【24h】

Hidden magnetic excitation in the pseudogap phase of a high- T_c superconductor

机译:高T_c超导体伪间隙相中的隐藏磁激励

获取原文
获取原文并翻译 | 示例
       

摘要

The elucidation of the pseudogap phenomenon of the high-transition-temperature (high-T_c) copper oxides-a set of anomalous physical properties below the characteristic temperature T~* and above T_c-has been a major challenge in condensed matter physics for the past two decades. Following initial indications of broken time-reversal symmetry in photoemission experiments, recent polarized neutron diffraction work demonstrated the universal existence of an unusual magnetic order below T~* (refs 3,4). These findings have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. They are furthermore consistent with a particular type of order involving circulating orbital currents, and with the notion that the phase diagram is controlled by a quantum critical point. Here we report inelastic neutron scattering results for HgBa_2CuO_(4+δ)that reveal a fundamental collective magnetic mode associated with the unusual order, and which further support this picture. The mode's intensity rises below the same temperature T~* and its dispersion is weak, as expected for an Ising-like order parameter. Its energy of 52-56 meV renders it a new candidate for the hitherto unexplained ubiquitous electron-boson coupling features observed in spectroscopic studies.
机译:过去,凝结物物理学面临的主要挑战是阐明高转变温度(高T_c)铜氧化物的伪间隙现象(低于特征温度T〜*且高于T_c的一系列异常物理特性)。二十年。根据光发射实验中时间逆转对称性破坏的初步迹象,最近的极化中子衍射工作证明了在T〜*以下普遍存在着异常的磁序(参考文献3,4)。这些发现具有深远的含义,即伪间隙机制构成了物质的真正新阶段,而不仅仅是交叉现象。它们还与涉及循环轨道电流的特定类型的阶跃以及相位图由量子临界点控制的观念相一致。在这里,我们报告了HgBa_2CuO_(4 +δ)的非弹性中子散射结果,该结果揭示了与异常序相关的基本集体磁模,并进一步支持了该图。正如对一个类似于伊辛的阶数参数所期望的,该模式的强度上升到相同的温度T〜*以下,并且其色散很弱。其52-56 meV的能量使其成为光谱研究中迄今无法解释的普遍存在的电子-玻色子耦合特征的新候选者。

著录项

  • 来源
    《Nature》 |2010年第7321期|p.283-285119|共4页
  • 作者单位

    Department of Physics, Stanford University, Stanford, California 94305, USA Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany;

    rnLaboratoire Leon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif sur Yvette, France;

    rnSchool of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA;

    rnT.H. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA 1. Physikalisches Institut, Universitat Stuttgart, 70550 Stuttgart, Germany Institute of Physics, Bijenicka cesta 46,10 000 Zagreb, Croatia (N.B.).;

    rnlnstitut fuer Physikalische Chemie, Universitaet Goettingen, 37077 Gottingen, Germany;

    rnForschungsneutronenquelle Heinz Maier-Leibnitz, 85747 Garching, Germany;

    rnLaboratoire Leon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif sur Yvette, France;

    rnlnstitut Laue Langevin, 38042 Grenoble Cedex 9, France;

    rnT.H. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China;

    Laboratoire Leon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif sur Yvette, France;

    rnSchool of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:55:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号