首页> 外文期刊>Nature >Graphene and boron nitride lateral heterostructures for atomically thin circuitry
【24h】

Graphene and boron nitride lateral heterostructures for atomically thin circuitry

机译:石墨烯和氮化硼横向异质结构,用于原子薄电路

获取原文
获取原文并翻译 | 示例
       

摘要

Precise spatial control over the electrical properties of thin films is the key capability enabling the production of modern integrated circuitry. Although recent advances in chemical vapour deposition methods have enabled the large-scale production of both intrinsic and doped graphene1'6, as well as hexagonal boron nitride (A-BN), controlled fabrication of lateral heterostructures in these truly atomically thin systems has not been achieved. Graphene/A-BN interfaces are of particular interest, because it is known that areas of different atomic compositions may coexist within continuous atomically thin films510 and that, with proper control, the bandgap and magnetic properties can be precisely engineered11"13. However, previously reported approaches for controlling these interfaces have fundamental limitations and cannot be easily integrated with conventional lithography14"16. Here we report a versatile and scalable process, which we call 'patterned regrowth', that allows for the spatially controlled synthesis of lateral junctions between electrically conductive graphene and insulating A-BN, as well as between intrinsic and substitutionally doped graphene. We demonstrate that the resulting films form mechanically continuous sheets across these heterojunctions. Conductance measurements confirm laterally insulating behaviour for A-BN regions, while the electrical behaviour of both doped and undoped graphene sheets maintain excellent properties, with low sheet resistances and high carrier mobilities. Our results represent an important step towards developing atomically thin integrated circuitry and enable the fabrication of electrically isolated active and passive elements embedded in continuous, one-atom-thick sheets, which could be manipulated and stacked to form complex devices at the ultimate thickness limit.
机译:精确控制薄膜的电性能是实现现代集成电路生产的关键能力。尽管化学气相沉积方法的最新进展已经能够大规模生产本征和掺杂的石墨烯1'6,以及六方氮化硼(A-BN),但是在这些真正原子薄的系统中尚未实现对侧向异质结构的受控制造实现。石墨烯/ A-BN界面特别受关注,因为众所周知,不同原子组成的区域可以共存于连续的原子薄膜510中,并且通过适当的控制,可以精确地设计带隙和磁性能。11“ 13。报道的控制这些界面的方法具有根本的局限性,不能轻松地与传统的光刻技术14集成在一起。在这里,我们报告了一种通用且可扩展的过程,我们将其称为“图案再生长”,该过程可用于空间控制合成导电石墨烯与绝缘A-BN之间以及本征和取代掺杂的石墨烯之间的横向结。我们证明了所得的薄膜跨这些异质结形成机械连续的薄片。电导测量结果证实了A-BN区域的横向绝缘行为,而掺杂和未掺杂的石墨烯片的电行为均保持了优异的性能,且具有低的片电阻和高的载流子迁移率。我们的结果代表了开发原子薄集成电路的重要一步,并使电隔离的有源和无源元件的制造嵌入了连续的,一个原子厚度的薄板中,可以对其进行操纵和堆叠以形成最终厚度极限的复杂器件。

著录项

  • 来源
    《Nature》 |2012年第7413期|p.627-632|共6页
  • 作者单位

    Department of Chemistry and Chemical Biology,Cornell University,Ithaca,New York 14853,USA;

    Department of Chemistry and Chemical Biology,Cornell University,Ithaca,New York 14853,USA;

    Department of Chemistry and Chemical Biology,Cornell University,Ithaca,New York 14853,USA;

    School of Applied and Engineering Physics,Cornell University,Ithaca,New York 14853,USA;

    School of Applied and Engineering Physics,Cornell University,Ithaca,New York 14853,USA;

    School of Applied and Engineering Physics,Cornell University,Ithaca,New York 14853,USA,Kavli Institute at Cornell for Nanoscale Science,Ithaca,New York 14853,USA;

    Department of Chemistry and Chemical Biology,Cornell University,Ithaca,New York 14853,USA,Kavli Institute at Cornell for Nanoscale Science,Ithaca,New York 14853,USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号