首页> 外文期刊>Nature >Monolayer semiconductor nanocavity lasers with ultralow thresholds
【24h】

Monolayer semiconductor nanocavity lasers with ultralow thresholds

机译:具有超低阈值的单层半导体纳米腔激光器

获取原文
获取原文并翻译 | 示例
       

摘要

Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor-that is, a tungsten diselenide monolayer-is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer Nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.
机译:通过使用赛尔腔中的腔量子电动力学,通过使用光子腔来工程化纳米级发光体的电磁环境可以显着提高其自发发射率。这种效果可以大大降低发射器的发射阈值,从而提供一种具有小占位面积,低功耗和超快速调制的低阈值激光系统。通过将量子点嵌入光子晶体腔(PCC)中,已经成功开发了超低阈值纳米级激光器。然而,一些挑战阻碍了该架构的实际应用,包括点的随机位置和组成波动,电流注入的极端困难以及与电子电路的兼容性不足。在这里,我们报告了一种新的激射策略:将原子薄晶体半导体(即二硒化钨单层)无损和确定性地作为增益介质引入预制PCC的表面。从而以在130开尔文下低至27纳瓦的光泵浦阈值实现了在可见光状态下工作的连续波纳米激光,这与在量子点PCC激光器中获得的值相似。激射作用的关键在于增益介质的单层性质,它将直接间隙激子限制在PCC表面的一纳米之内。表面增益几何形状提供了前所未有的可及性,因此能够通过外部控制(例如静电门控和电流注入)调整增益特性,从而实现电泵操作。我们的方案是可扩展的,并且与用于片上光通信技术的集成光子学兼容。

著录项

  • 来源
    《Nature》 |2015年第7545期|69-72|共4页
  • 作者单位

    Department of Physics, University of Washington, Seattle, Washington 98195, USA;

    Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    Department of Physics, University of Washington, Seattle, Washington 98195, USA;

    Department of Physics, University of Washington, Seattle, Washington 98195, USA,Department of Applied Physics, Tianjin University, Tianjin 300072, China;

    Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA,Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA;

    Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA,Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA,Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA;

    Department of Physics, Humboldt University, D-12489 Berlin, Germany;

    Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China;

    Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA;

    Department of Physics, University of Washington, Seattle, Washington 98195, USA,Department of Material Science and Engineering, University of Washington, Seattle, Washington 98195, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号